http://25.media.tumblr.com/tumblr_m3w40gVRQj1rs84cuo1_500.gif

lunes, 14 de junio de 2010

LOS SUELOS

1. Definición de Suelos:

Es la capa más superficial de la corteza terrestre, que resulta de la descomposición de las rocas por los cambios bruscos de temperatura y por la acción del agua, del viento y de los seres vivos.

El proceso mediante el cual los fragmentos de roca se hacen cada vez más pequeños, se disuelven o van a formar nuevos compuestos, se conoce con el nombre de meteorización.

Los productos rocosos de la meteorización se mezclan con el aire, agua y restos orgánicos provenientes de plantas y animales para formar suelos. Luego el suelo puede ser considerado como el producto de la interacción entre la litosfera, la atmósfera, la hidrosfera y la biosfera. Este proceso tarda muchos años, razón por la cual los suelos son considerados recursos naturales no renovables. En el suelo se desarrolla gran parte de la vida terrestre, en él crece una gran cantidad de plantas, y viven muchos animales.

2) Componentes del Suelo

Se pueden clasificar en inorgánicos, como la arena, la arcilla, el agua y el aire; y orgánicos, como los restos de plantas y animales. Uno de los componentes orgánicos de los suelos es el humus. El humus se encuentra en las capas superiores de los suelos y constituye el producto final de la descomposición de los restos de plantas y animales, junto con algunos minerales; tiene un color de amarillento a negro, y confiere un alto grado de fertilidad a los suelos.

• Fase Sólida: Comprende, principalmente, los minerales formados por compuestos relacionado con la litosfera, como sílice o arena, arcilla o greda y cal. También incluye el humus.

• Fase Líquida: Comprende el agua de la hidrosfera que se filtra por entre las partículas del suelo.

• Fase Gaseosa: Tiene una composición similar a la del aire que respiramos, aunque con mayor proporción de dióxido de carbono (CO). Además, presenta un contenido muy alto de vapor de agua. Cuando el suelo es muy húmedo, los espacios de aire disminuyen, al llenarse de agua.

3) Propiedades y Textura de los Suelos

Entre las propiedades de los suelos se encuentran: El color, distribución del tamaño de las partículas, consistencia, textura, estructura, porosidad, atmósfera, humedad, densidad, pH, materia orgánica, capacidad de intercambio iónico, sales solubles y óxidos amorfos-sílice alúmina y óxidos de fierro libres.

Las propiedades físicas de los suelos dependen de la composición menerológica, de la forma y del tamaño de las partículas que lo forman y del ambiente que los rodea. El tamaño, la forma y la composición química de las partículas determinan la permeabilidad, la capilaridad, la tenacidad, la cohesión y otras propiedades resultantes de la combinación de todos los integrantes del suelo.

Otra propiedad física de los suelos que hay que considerar es la temperatura, que tiene como fuente principal la irradiación solar.

Las propiedades físicas permiten conocer mejor las actividades agrícolas fundamentales como el laboreo, la fertilización, el drenaje, la irrigación, la conservación de suelos y agua, así como, el manejo adecuado de los residuos cosechas. Tanto las propiedades físicas como las químicas, biológicas y mineralógicas determinan, entre otras, a la productividad de los suelos.

4) Clases de Textura de los Suelos

Los suelos muestran gran variedad de aspectos, fertilidad y características químicas en función de los materiales minerales y orgánicos que lo forman. El color es uno de los criterios más simples para calificar las variedades de suelo. La regla general, aunque con excepciones, es que los suelos oscuros son más fértiles que los claros. La oscuridad suele ser resultado de la presencia de grandes cantidades de humus.

A veces, sin embargo, los suelos oscuros o negros deben su tono a la materia mineral o a humedad excesiva; en estos casos, el color oscuro no es un indicador de fertilidad.

Los suelos rojos o castaño-rojizos suelen contener una gran proporción de óxidos de hierro (derivado de las rocas primigenias) que no han sido sometidos a humedad excesiva. Por tanto, el color rojo es, en general, un indicio de que el suelo está bien drenado, no es húmedo en exceso y es fértil.

Los suelos amarillos o amarillentos tienen escasa fertilidad. Deben su color a óxidos de hierro que han reaccionado con agua y son de este modo señal de un terreno mal drenado.

Los suelos grisáceos pueden tener deficiencias de hierro u oxígeno, o un exceso de sales alcalinas, como carbonato de calcio.

La textura general de un suelo depende de las proporciones de partículas de distintos tamaños que lo constituyen. Las partículas del suelo se clasifican como arena, limo y arcilla. Las partículas de arena tienen diámetros entre 2 y 0,05 mm, las de limo entre 0,05 y 0,002 mm, y las de arcilla son menores de 0,002 mm.

En general, las partículas de arena pueden verse con facilidad y son rugosas al tacto. Las partículas de limo apenas se ven sin la ayuda de un microscopio y parecen harina cuando se tocan. Las partículas de arcilla son invisibles si no se utilizan instrumentos y forman una masa viscosa cuando se mojan.

5) Horizontes del Suelo

Se define como Horizontes a las capas que forman el suelo. El perfil de un suelo ideal comprende los siguientes horizontes:

Horizonte A: Llamado también Horizonte de Lavado por estar expuesto a la erosión y lavado de la lluvia. Es la capa mas superficial del suelo, abundan las raíces y se pueden encontrar los microorganismos animales y vegetales, es de color oscuro debido a la presencia del humus.

Horizonte B: Recibe el nombre también de Horizonte de Precipitación, ya que aquí se acumulan las arcillas que han sido arrastradas por el agua del horizonte, es de color mas claro que el anterior y está constituido por humus mezclado con fragmentos de rocas.

Horizonte C: Se le conoce también como Subsuelo o Zona de Transición, está formado por la roca madre fragmentada en proceso de desintegración.

Horizonte D: Es la capa más profunda del suelo, está formado por la roca madre fragmentada, por lo que también recibe el nombre de Horizonte R.

6) Factores que influyen en la formación de los Suelos

Los principales factores que influyen en la formación de los suelos son:

• Factores Litológicos: Son aquellos que se refieren a la naturaleza física y química de la roca madre, la cual puede ser de cualquier tipo.

• Factores Biológicos: Son aquellos que están representados por los seres vivos (plantas, animales, microorganismos), los cuales juegan un papel importantes en el desarrollo de los suelos.

• Factores Topográficos: Son aquellos que se derivan de la ubicación geográfica de los suelos.

• Factores Climáticos: Son los más importantes en la formación de los suelos ya que el clima establece las condiciones de temperatura y humedad.

- El aumento de la temperatura influye de manera decisiva en muchas de las reacciones químicas que se desarrollan en los suelos, con lo cual se hace mas intenso el proceso de desintegración de las rocas.

- El aumento de la humedad o de las precipitaciones es favorable para el aumento de los compuestos orgánicos y la disminución de las sales en los suelos.

- El exceso de precipitaciones ocasiona un intenso lavado del suelo y por consiguiente lo deja estéril.

• Factores Temporales: El tiempo es otro factor necesario para que el resto de los factores que influyen en la formación de los suelos puedan actuar.

7) Formación de los Suelos

El suelo es resultado de la interacción de cinco factores: El material parental, el relieve, el tiempo, el clima, y los seres vivos. Los tres primeros factores desempeñan un rol pasivo, mientras que el clima y los seres vivos participan activamente en la formación del suelo.

• El material parental o roca madre es el sustrato a partir del cual se desarrolla el suelo. De éste se deriva directamente la fracción mineral del suelo y ejerce una fuerte influencia sobre todo en la textura del suelo.

• El clima influye en la formación del suelo a través de la temperatura y la precipitación, los cuales determinan la velocidad de descomposición de los minerales y la redistribución de los elementos; así como a través de su influencia sobre la vida animal y vegetal.

• Los seres vivos (plantas, animales, bacterias y hongos) son el origen de la materia orgánica del suelo, y facilitan su mezcla con la materia mineral.

El relieve afecta a la cantidad de agua que penetra en el suelo y a la cantidad de material que es arrastrado, sea por el agua o el viento.

• El tiempo es necesario para un completo desarrollo del suelo. El tiempo de formación de un pequeño volumen de suelo es muy largo (1 cm3 de suelo puede tardar entre 100 y 1000 años en formarse) pero su destrucción es muy rápida.

8) Criterios para la Clasificación de los Suelos

Los criterios más considerados para la clasificación de los suelos los Petrográficos, los genéticos y los climáticos.

8.1. Clasificación Petrográfica: Es aquella que toma en cuenta el predominio de uno de los integrantes de la fracción mineral del suelo, de donde resultan suelos silíceos, arcillosos, calizos, salinos, etc.

8.2. Clasificación Genética: Es aquella que toma en cuenta el proceso que dio origen a los suelos. Esta divide los suelos en:

• Suelos Autóctonos: Son aquellos que resultan del proceso de desintegración de las rocas de un lugar, sin que los materiales desintegrados sean transportados a otros, por los que estos se quedan cubriendo la roca madre.

• Suelos Alóctonos: Son los que se forman por los componentes que han llegado de fuentes de suministro alejadas del lugar de depósito.

8.3. Clasificación Climática: Está relacionada con las condiciones climáticas

9) Clasificación de los Suelos

La clasificación de los suelos suele basarse en la morfología y la composición del suelo, con énfasis en las propiedades que se pueden ver, sentir o medir. A continuación se presentan algunas clasificaciones.

Clasificación Nº1

- Suelos Zonales: Suelos que reflejan la influencia del clima y la vegetación como los controles más importantes.

- Suelos Azonales: Son aquellos que no tienen limites claramente definidos y no están mayormente influenciados por el clima.

- Suelos Intrazonales: Son aquellos que reflejan la influencia dominante de un factor local sobre el efecto normal del clima y la vegetación. Ej.: los suelos hidromorficos (pantanos) o calcimorficos formados por calcificación.

Clasificación Nº2

- Suelos Exodinamorficos: Son aquellos suelos que reflejan la influencia del clima y la vegetación.

- Suelos Exodinamorficos: Son aquellos suelos influenciados por el material parental.

Clasificación Nº3

- Pedocales: Suelos con acumulación de carbonatos de calcio, generalmente están en ambientes áridos y semiáridos.

- Pedalfers: Suelos con alta lixiviación y segregación de Al y Fe , generalmente están en ambientes húmedos.

10) Tipos de Suelo

Existen básicamente tres tipos de suelos: los no evolucionados, los poco evolucionados y los muy evolucionados; atendiendo al grado de desarrollo del perfil, la naturaleza de la evolución y el tipo de humus.

10.1. Los suelos no evolucionados

Estos son suelos brutos muy próximos a la roca madre. Apenas tienen aporte de materia orgánica y carecen de horizonte B.

Si son resultado de fenómenos erosivos, pueden ser: regosoles, si se forman sobre roca madre blanda, o litosoles, si se forman sobre roca madre dura. También pueden ser resultado de la acumulación reciente de aportes aluviales. Aunque pueden ser suelos climáticos, como los suelos poligonales de las regiones polares, los reg (o desiertos pedregosos), y los ergs, de los desiertos de arena.

10.2. Los suelos poco evolucionados

Los suelos poco evolucionados dependen en gran medida de la naturaleza de la roca madre. Existen tres tipos básicos: los suelos ránker, los suelos rendzina y los suelos de estepa.

Los suelos ránker son más o menos ácidos y tienen un humus de tipo moder o mor. Pueden ser fruto de la erosión, si están en pendiente, del aporte de materiales coluviales, o climáticos, como los suelos de tundra y los alpinos.

Los suelos rendzina se forman sobre una roca madre carbonatada, como la caliza, y suelen ser fruto de la erosión. El humus típico es el mull y son suelos básicos.

Los suelos de estepa se desarrollan en climas continentales y mediterráneo subárido. El aporte de materia orgánica es muy alto, por lo que el horizonte A está muy desarrollado. La lixiviación es muy escasa. Un tipo particular de suelo de estepa es el suelo chernozem, o brunizem o las tierras negras; y según sea la aridez del clima pueden ser desde castaños hasta rojos.

10.3. Los suelos evolucionados

Estos son los suelos que tienen perfectamente formados los tres horizontes. Encontramos todo tipo de humus, y cierta independencia de la roca madre. Los suelos típicos son: los suelos pardos, lixiviados, podsólicos, podsoles, ferruginosos, ferralíticos, pseudogley, gley y halomorfos (solonchaks, alcalinos, solonetz y solods).

Los suelos pardos son típicos del bosque templado y el tipo de humus es mull.

Los suelos lixiviados son típicos de regiones de gran abundancia de precipitaciones en el clima templado, dominados por los procesos de lixiviación. El tipo de humus también es mull.

Los podsoles son suelos de podsolización acentuada; es decir, tienen gran acumulación de elementos ferruginosos, silicatos y alumínicos en el horizonte B. La lixiviación arrastra estos elementos del horizonte A al B. El humus típico es el mor.

Los suelos podsólicos tienen una podsolización limitada. Son de color ocre claro o rojizo. El tipo de humus es mor. Tanto este como el anterior son típicos de los climas templados.

Los suelos ferruginosos se desarrollan en los climas cálidos con una estación seca muy marcada. A este tipo de suelo pertenece el suelo rojo mediterráneo. Se caracterizan por la rubefacción de los horizontes superficiales. En ocasiones se desarrolla la terra rossasobre roca madre caliza.

Los suelos ferralíticos se encuentran en climas cálidos y muy húmedos. La roca madre está alterada y libera óxidos de hierro, aluminio y sílice. Son suelos muy lixiviados. Estos suelos pueden tener caparazón si se ven sometidos a la erosión o a migraciones masivas de coloides.

Los suelos gley son suelos hidromorfos, en los que los procesos de descomposición de la materia biológica se hacen de manera anaeróbica, y la carga orgánica es abundante y ácida. Se encuentran en condiciones de agua estancada. Es un suelo asfixiante, poco propicio para la vida. La presencia de agua es permanente, como ocurre en la orilla de los ríos y lagos. Es de color gris verdoso debido a la presencia de hierro ferroso.

Los suelos pseudogley son semejantes a los gley; pero la capa freática es temporal, por lo que se alternan los períodos húmedos con los secos. Este suelo y el anterior suelen tener humus de turba.

Los fenómenos de hidromorfia son los responsables de la lixiviación de los suelos y de la capacidad de estos para contener vida en las épocas secas. Si la hidromorfia no es muy acusada tendremos otro tipo de suelo.

Los suelos halomorfos presentan abundancia de cloruro sódico, ya sea de origen marino o geológico. Según el grado de saturación y de lixiviación se distinguen:

Suelos solonchaks, que aparecen en regiones con una estación muy seca, debido a los fenómenos de migración ascendente de los coloides salinos, y no tiene horizonte B.

Suelos alcalinos, que aparecen en climas ligeramente más húmedos, se trata de suelos solonchaks que reciben aportes de agua dulce.

Los suelos solonetz son alcalinos y reciben aportes minerales y orgánicos producto de la lixiviación. Estos coloides forman un horizonte B salino, pero el horizonte A está menos saturado.

Los suelos solods que tienen una lixiviación más intensa que los solonetz, lo que permite que se produzcan fenómenos de podsolización.

11) La Estructura del Suelo

Se refiere a la manera en que las partículas del suelo se agrupan en fragmentos mayores. Las partículas irregulares de aristas y vértices agudos dan lugar a una estructura en bloques con forma de nuez. Si las partículas son más o menos esféricas, la estructura es granular. Algunos suelos tienen estructura prismática o en columnas, formada por prismas o columnas verticales de tamaño comprendido entre 0,5 y 10 centímetros.

La estructura laminar consiste en trozos planos en posición horizontal. La estructura influye en la proporción de agua que es absorbida por el suelo, en la susceptibilidad del suelo a la erosión y en la facilidad de cultivo.

12) Características Hídricas de los Suelos

Agua Estructural: Esta contenida en los minerales del suelo (hidromica, óxidos hidratados, etc.) solamente son liberados en procesos edáficos

Agua Hidroscópica: Es Agua inmóvil, es removida solamente por calentamiento o sequía prolongada.

Agua Capilar: Es agua retenida en los microporos por fuerza de capilaridad, el agua de los capilares mayores puede percolar pero no puede drenar fuera del perfil

Agua Gravitacional: Es agua retenida en los macro poros y puede drenar fuera del perfil.

13) Algunas técnicas para la protección de los suelos

1. No dejar los suelos desnudos, sin vegetación, porque los vegetales forman una capa protectora contra los agentes que causan la erosión de los suelos como el agua y el viento.

2. Se debe practicar la rotación de cultivos y sembrar plantas leguminosas, como la alfalfa, que restituyen el nitrógeno a los suelos empobrecidos.

3. Dejar descansar el suelo después de cada cosecha, así se evitará el desgaste acelerado de los nutrientes.

4. Se debe evitar el uso de fertilizantes químicos, ya que éstos matan los organismos del suelo y contaminan las aguas subterráneas, que luego se utilizan para el consumo humano y animal.

Los órdenes y subórdenes identificados son los siguientes:

Entisoles

Son suelos jóvenes, con historia pedogenética muy corta, característicos de zonas de aluvión, valles de inundación, rellenos de erosión, zonas de dunas y pendientes muy acentuadas con fuerte erosión. Los subórdenes más frecuentes son:

Aquents: Saturados de agua, se les encuentra en cubetas de decantación, ciénagas y deltas.

Fluvents: Son suelos recientes, propios de planicies y de valles aluviales, tienen en general una granulometría arcilloso-limosa y regular cantidad de materia orgánica.

Orthens: Propios de planicies aluviales que reciben sedimentos de zonas con mayor erosión que los Fluvents. Tienen menos materia orgánica y granulometría limo-arenosa.

Psamments: Suelos de aluviones arenosos, suelos de dunas y rellenos de erosión.

Distribución

Tienen una muy amplia distribución geográfica, desde el extremo occidente hacia el oriente se puede identificar las siguientes áreas, cubiertas por estos suelos.

Zulia: Los valles aluviales y planicies de desbordamiento de la cuenca de los ríos Limón, Palmar, Apón, Aricuro, Negro, Santa Ana, Catatumbo, Zulia, Escalante, Chama.

En la llanura con cauces divagantes entre el río Chama y el Motatán, en los valles y planicies de desbordamiento de los ríos Motatán-Monay, Misoa y Machango. En estas áreas los subórdenes predominantes son los Aquients, con alguna presencia de Pasmments en las cuencas de los ríos El Limón y Motatán-Monay.

Lara: Cuenca alta del río Tocuyo, en la depresión de Carora, donde predomina el suborden Orthents,

Falcón: En el valle aluvial de la cuenca del río Mitare: alta, baja y media. En el istmo que une a la Península de Paraguaná con tierra firme. En la cuenca del río Mitare predomina el suborden de los Fluvents y en el istmo el de los Psamments.

Yaracuy: Los valles aluviales y planicies de desbordamiento de los ríos Tocuyo, Aroa y Yaracuy. Aquí los Aquents alternan con Usterts del orden Vertisoles y Tropepts del orden Inceptisols.

Portuguesa, Barinas y Apure: Se extienden sobre una ancha franja (100 km) en los altos llanos, frente al piedemonte, desde la selva de San Camilo hasta el paralelo 9° L.N. En esta área están interrumpidos por frecuentes islas de Vertisoles. Cubren además todo el distrito Arismendi del estado Barinas, as! como las llanuras de desbordamiento de las cuencas bajas de los ríos Apure, Arauca, Cunaviche y Capanaparo. Los subórdenes predominantes son: Fluvents, Orthents y Aquents.

Carabobo y Aragua: Los Entisoles son los suelos dominantes, con subórdenes tales como Fluvents y Orthents. Además abundantes intercalaciones de Vertisoles con subórdenes del tipo Usterts.

Miranda: En el área de Barlovento los Entisoles están representados por subórdenes tales como Fluvents, Psamments y Aquents, e intercalación de Vertisoles de la sub-clase Usterts.

Guárico y Anzoátegui: Valles aluviales de la cuenca alta del río Unare con predominancia de los subórdenes Fluvents y Orthents. El valle aluvial del río Manzanares y la cuenca alta del río Aragua.

Monagas y Territorio Federal Delta Amacuro: Los Entisoles cubren la parte alta de la región deltaica con predominancia de los subórdenes Psamments. Aquents y Fluvents.

Inceptisoles

Suelos mineralizados de origen reciente. Son procesos pedogenéticos que segregan sesquióxidos forman estructuras y originan movimientos de CO3Ca. Los subsuelos son habitualmente mal drenados.

Los dos subórdenes más frecuentes son:

Aquepts: Propios de bajos de planicies aluviales con subsuelos mal drenados.

Tropepts: Propios de las terrazas de las planicies aluviales y de los cauces y abanicos aluviales. Aparecen también en terrenos con fuertes pendientes estabilizadas.

La distribución geográfica comprende:

Sierra de Perijá: Donde predominan los Tropepts asociados con Entisoles del suborden Orthents.

En el interfluvio entre los ríos Zulia y el Escalante-Moratuto, constituido por planicies aluviales mal drenadas.

En la porción oriental de Lara-Falcón, Sierras de Aroa, Churuguara y San Luis.

En la Cordillera de la Costa, desde la Sierra de Nirgua hasta la Península de Paria. Aquí predominan los Tropepts asociados con Entisoles, Ultisoles y Oxisoles.

En el estado Portuguesa, en el interfluvio del río de ese nombre y el río Cojedes, en los valles aluviales de los ríos Guache y Acarigua. Los subórdenes predominantes son: Aquepts asociados con Entisoles (Fluvents) y Mollisoles (Ustolls).

Vertisoles

Suelos muy arcillosos con fuerte expansión al humedecerse y contracción al secarse. Son característicos de las cubetas de decantación y pantanos en los llanos y en valles aluviales. Los subórdenes más comunes son Ustents y Uderts.

Su distribución geográfica en Venezuela es más restringida que la de dos órdenes anteriores:

Los suelos vertisoles ocupan las partes bajas del relieve en los altos llanos occidentales. donde forman, entre los Ultisoles, extensas islas en la dirección del drenaje. Predominan los Usterts asociados a Inceptisoles (Aquepts) y Entisoles (Fluvents).

En la zona de la confluencia de los ríos Pao y Tiznados con el río Portuguesa, donde predominan los Usterts.

En Falcón, en el valle medio e inferior del río Hueque y en el valle del río Cauce donde predominan los Usterts.

En la cuenca media e inferior del río Unare también con predominancia de Usterts.

Alfisoles

Son suelos de moderado desarrollo, livianos en superficie, con acumulación de arcilla en el subsuelo, frecuentemente salinos.

Los subsuelos más frecuentes son: Aqualfs, Ustalfs y Udalfs. Ocupan una porción considerable del territorio venezolano.

En el Zulia son característicos del glacis pleistoceno sometido al clima correspondiente del bosque muy seco tropical. Se les encuentra así a ambas márgenes del Lago, entre los paralelos 10° y 11° de L.N. Allí predomina el suborden Ustalfs asociado a Ultisoles (Ustults) y a Inceptisoles (Tropepts).

Cubren una estrecha franja del piedemonte oriental de la Cordillera de los Andes, desde el río Canagua, en el extremo suroeste hasta el río Turbio, en el extremo noreste. Aquí se encuentran los dos subórdenes Ustalfs y Udalfs asociados a Entisoles (Fluvents) y Ultisoles (Ustults).

En el estado Guarico cubren una extensa región comprendida entre los paralelos 8°20' LS y 10° LN y los meridianos 64" 30' y 66°40' de L.O donde predominan los Ustalfs y los Aqualfs asociados con Ultisoles (Aquelts), Inceptisoles (Tropepts) y Entisoles (Fluvents).

Ultisoles

Son suelos con buen desarrollo del perfil, ácidos, pocos salinos, pobres en nutrientes y con eluviación de arcilla.

Sus subórdenes van de mal a bien drenados, y se denominan Aquults, Ustults y Udulfts.

Se les encuentra en el piedemonte de Perijá y en las viejas terrazas pleistocenas sometidos al clima correspondiente del bosque húmedo tropical, con más de 2000 mm de precipitación anual y temperaturas superiores a los 24° C. Allí predomina el suborden, bien drenado. Udults.

En el piedemonte oriental de la misma Cordillera una angosta faja (50 Km.) va desde el río Canagua en el noreste hasta el río Apure en el suroeste. Predominan los Udults asociados a Ustults.

En los apureños, entre los ríos Apure y Arauca, donde predomina el suborden mal drenado: Aquults asociado con Inceptisoles (Aquepts), Alfisoles (Aqualfs) y Entisoles (Fluvents y Aquents).

Al sur y centro del estado Guárico donde predominan los Aquults asociados con Inceptisoles y Alfisoles de los subórdenes mal drenados.

Oxisoles

Son suelos residuales, producto de la intensa meteorización. Se desarrollaron durante largo tiempo en viejos aluviones aterrazados y sobre rocas de gran estabilidad. Son suelos muy lixiviados con alto contenido en hierro y aluminio.

Sus subórdenes más comunes son Aquox (mal drenados), Ustox (moderadamente drenado) y Udox (bien drenados).

Ocupan una extensa región en el piedemonte meridional de la cordillera del interior, norte y centro del estado Guárico hasta al sur de Calabozo, donde predomina el suborden Ustox.

Son los suelos característicos de las mesas orientales de Anzoátegui y Monagas, donde también predominan los Ustox. Bordean en una faja de unos 80 Km. de ancho la margen norte del río Meta, donde los Ustox son predominantes.

Son suelos con carencia de humedad, propios de las zonas áridas y semiáridas. Son salinos o arcillosos en el subsuelo, característica que define a los Orghisoles y a los Agrisoles como subórdenes.

Cubren la Guajira y gran parte del estado Lara, dos tercios de Falcón, la costa del estado Sucre y gran parte del estado Nueva Esparta. En todos los casos predominan los Orthids.

Histoles

Propios de las llanuras deltaicas, son ricos en materia orgánica, inmaduros, mal drenados y no estructurados.

Cubren el litoral atlántico en el Delta Amacuro.

ANEXOS

Esquema de Clasificación de Textura de los Suelos

Textura Arenoso Franco Franco limoso Arcilloso Agente de agregación

Tacto Áspero Áspero Suave Terronoso o plástico

Tensión superficial

Drenaje interno Excesivo Bueno Suave Suave o pobre Materia orgánica

Agua disponible para las plantas Baja Media Alta Alta Alta concentración de electrolitos

Agua transportable Baja Media Alta Alta Bajo potencial electrocinético

Labranza Fácil Fácil Media Difícil Bajo potencial electrocinético

Erosión eólica Alta Media Baja Baja Bajo potencial electrocinético

Representación Gráfica de la Formación de los Suelos

Ejemplo de clasificación de los suelos



Representación Gráfica de la Estructura de los Suelos

CONCLUSIONES

Con la realización de este trabajo de investigación se puede concluir lo siguiente:

1.- El suelo es un recurso natural renovable, pero su recuperación amerita períodos de tiempo prolongados, lo que implica que se debe hacer uso adecuado de los mismos con el fin de protegerlos.

2.- Los suelos muestran gran variedad de aspectos, fertilidad y características químicas en función de los materiales minerales y orgánicos que lo forman.

3.- La acción conjunta de los factores que condicionan la formación y evolución del suelo conduce al desarrollo de diferentes perfiles o tipos de suelos.

4.- En el desarrollo y formación de los suelos intervienen numerosos tipos de procesos, algunos de ellos son de tipo pasivo; otros son agentes activos.

5.- El suelo es un material superficial natural, que sostiene la vida vegetal. Cada suelo posee ciertas propiedades que son determinadas por el clima y los organismos vivientes que operan por períodos de tiempo sobre los materiales de la tierra y sobre el paisaje de relieve variable.

6.- Sin el suelo sería imposible la existencia de plantas superiores y, sin ellas, ni nosotros ni el resto de los animales podríamos vivir. A pesar de que forma una capa muy delgada, es esencial para la vida en tierra firme. Cada región del planeta tiene unos suelos que la caracterizan, según el tipo de roca de la que se ha formado y los agentes que lo han modificado.

CONCEPTO

Un suelo se puede degradar al acumularse en él sustancias a unos niveles tales que repercuten negativamente en el comportamiento de los suelos. Las sustancias, a esos niveles de concentración, se vuelven tóxicas para los organismos del suelo. Se trata pues de una degradación química que provoca la pérdida parcial o total de la productividad del suelo.

Hemos de distinguir entre contaminación natural, frecuentemente endógena, y contaminación antropica, siempre exógeno.

Los fenómenos naturales pueden ser causas de importantes contaminaciones en el suelo. Así es bien conocido el hecho de que un solo volcán activo puede aportar mayores cantidades de sustancias externas y contaminantes, como cenizas, metales pesados, H+ y SO4=, que varias centrales térmicas de carbón.

Pero las causas más frecuentes de contaminación son debidas a la actuación antrópica, que al desarrollarse sin la necesaria planificación producen un cambio negativo de las propiedades del suelo.

En los estudios de contaminación, no basta con detectar la presencia de contaminantes sino que se han de definir los máximos niveles admisibles y además se han de analizar posibles factores que puedan influir en la respuesta del suelo a los agentes contaminantes.


2.2 FACTORES INFLUYENTES EN LA CONTAMINACIÓN:

Que pueden tomar los diferentes aspectos:

2.2.1 Vulnerabilidad

Representa el grado de sensibilidad (o debilidad) del suelo frente a la agresión de los agentes contaminantes. Este concepto está relacionado con la capacidad de amortiguación. A mayor capacidad de amortiguación, menor vulnerabilidad.

El grado de vulnerabilidad de un suelo frente a la contaminación depende de la intensidad de afectación, del tiempo que debe transcurrir para que los efectos indeseables se manifiesten en las propiedades físicas y químicas de un suelo y de la velocidad con que se producen los cambios secuenciales en las propiedades de los suelos en respuesta al impacto de los contaminantes.

2.2.2 Poder de amortiguación

El conjunto de las propiedades físicas, químicas y biológicas del suelo lo hacen un sistema clave, especialmente importante en los ciclos biogeoquímicos superficiales, en los que actúa como un reactor complejo, capaz de realizar funciones de filtración, descomposición, neutralización, inactivación, almacenamiento, etc.

Por todo ello el suelo actúa como barrera protectora de otros medios más sensibles, como los hidrológicos y los biológicos. La mayoría de los suelos presentan una elevada capacidad de depuración.

Un suelo contaminado es aquél que ha superado su capacidad de amortiguación para una o varias sustancias, y como consecuencia, pasa de actuar como un sistema protector a ser causa de problemas para el agua, la atmósfera, y los organismos. Al mismo tiempo se modifican sus equilibrios biogeoquímicos y aparecen cantidades anómalas de determinados componentes que originan modificaciones importantes en las propiedades físicas, químicas y biológicas del suelo.

2.2.3 Biodisponibilidad

Se entiende la asimilación del contaminante por los organismos, y en consecuencia la posibilidad de causar algún efecto, negativo o positivo.

2.2.4 Movilidad

Se regulará la distribución del contaminante y por tanto su posible transporte a otros sistemas.

2.2.5 Persistencia

Se regulará el periodo de actividad de la sustancia y por tanto es otra medida de su peligrosidad.

2.3 CAUSAS

La mayoría de los procesos de pérdida y degradación del suelo son originados por la falta de planificación y el descuido de los seres humanos. Las causas más comunes de dichos procesos son:

2.3.1 Erosión

La erosión corresponde al arrastre de las partículas y las formas de vida que conforman el suelo por medio del agua (erosión hídrica) y el aire (erosión eólica). Generalmente esto se produce por la intervención humana debido a las malas técnicas de riego (inundación, riego en pendiente) y la extracción descuidada y a destajo de la cubierta vegetal (sobrepastoreo, tala indiscriminada y quema de la vegetación).

2.3.2 Contaminación

La contaminación de los suelos se produce por la depositación de sustancias químicas y basuras. Las primeras pueden ser de tipo industrial o domésticas, ya sea a través de residuos líquidos, como las aguas servidas de las viviendas, o por contaminación atmosférica, debido al material articulado que luego cae sobre el suelo.

2.3.3 Compactación

La compactación es generada por el paso de animales, personas o vehículos, lo que hace desaparecer las pequeñas cavernas o poros donde existe abundante microfauna y microflora.

2.3.4 Expansión urbana

El crecimiento horizontal de las ciudades es uno de los factores más importantes en la pérdida de suelos. La construcción en altura es una de las alternativas para reducir el daño.

2.4 AGENTES

Cuando en el suelo depositamos de forma voluntaria o accidental diversos productos como papel, vidrio, plástico, materia orgánica, materia fecal, solventes, plaguicidas, residuos peligrosos o sustancias radioactivas, etc., afectamos de manera directa las características físicas, químicas y

de este, desencadenando con ello innumerables efectos sobre seres vivos.

2.4.1 Plaguicidas

La población mundial ha crecido en forma abismante en estos últimos 40 a 50 años. Este aumento demográfico exige al hombre un gran desafío en relación con los recursos alimenticios, lo cual implica una utilización más intensiva de los suelos, con el fin de obtener un mayor rendimiento agrícola.

En agricultura, la gran amenaza son las plagas, y en el intento por controlarlas se han utilizado distintos productos químicos.

Son los llamados plaguicidas y que representan también el principal contaminante en este ámbito, ya que no sólo afecta a los suelos sino también, además de afectar a la plaga, incide sobre otras especies. Esto se traduce en un desequilibrio, y en contaminación de los alimentos y de los animales.

A) Tipos de plaguicidas

Existen distintos tipos de plaguicidas y se clasifican de acuerdo a su acción.

• Insecticidas

Se usan para exterminar plagas de insectos. Actúan sobre larvas, huevos o insectos adultos. Uno de los insecticidas más usado es el DDT, que se caracteriza por ser muy rápido. Trabaja por contacto y es absorbido por la cutícula de los insectos, provocándoles la muerte. Este insecticida puede mantenerse por 10 años o más en los suelos y no se descompone.

Se ha demostrado que los insecticidas órgano clorados, como es el caso del DDT, se introducen en las cadenas alimenticias y se concentran en el tejido graso de los animales. Cuanto más alto se encuentre en la cadena -es decir, más lejos de los vegetales- más concentrados estará el insecticida. Por ejemplo si se tiene:

En todos los eslabones de la cadena, existirán dosis de insecticida en sus tejidos. Sin embargo, en el carnívoro de 2do. orden, el insecticida estará mucho más concentrado.

Hay otros insecticidas que son usados en las actividades hortofrutícolas; son biodegradables y no se concentran, pero su acción tóxica está asociada al mecanismo de transmisión del impulso nervioso, provocando en los organismos contaminados una descoordinación del sistema nervioso.

• Herbicidas

Son un tipo de compuesto químico que destruye la vegetación, ya que impiden el crecimiento de los vegetales en su etapa juvenil o bien ejercen una acción sobre el metabolismo de los vegetales adultos.

Fungicidas

Son plaguicidas que se usan para combatir el desarrollo de los hongos (fitoparásitos). Contienen azufre y cobre.

2.4.2 Actividad minera

La actividad minera también contamina los suelos, a través de las aguas de relave. De este modo, llegan hasta ellos ciertos elementos químicos como mercurio (Hg), cadmio (Cd), cobre (Cu), arsénico (As), plomo (Pb), etcétera. Por ejemplo: el mercurio que se origina en las industrias de cemento, industria del papel, plantas de cloro y soda, actividad volcánica, etcétera.

Algunos de sus efectos tóxicos son: alteración en el sistema nervioso y renal. En los niños, provoca disminución del coeficiente intelectual; en los adultos, altera su carácter, poniéndolos más agresivos.

Otro caso es el arsénico que se origina en la industria minera. Su existencia es natural en la II Región. Este mineral produce efectos tóxicos a nivel de la piel, pulmones, corazón y sistema nervioso.

2.2.5 Basura

La destrucción y el deterioro del suelo son muy frecuentes en las ciudades y sus alrededores, pero se presentan en cualquier parte donde se arroje basura o sustancias contaminantes al suelo mismo, al agua o al aire.

Cuando amontonamos la basura al aire libre, ésta permanece en un mismo lugar durante mucho tiempo, parte de la basura orgánica (residuos de alimentos como cáscaras de fruta, pedazos de tortilla, etc.) se fermenta, además de dar origen a mal olor y gases tóxicos, al filtrarse a través del suelo en especial cuando éste es permeable, (deja pasar los líquidos) contamina con hongos, bacteria, y otros microorganismos patógenos (productores de enfermedades), no sólo ese suelo, sino también las aguas superficiales y las subterráneas que están en contacto con él, interrumpiendo los ciclos biogeoquímicos y contaminado las cadenas alimenticias.

2.5 CONSECUENCIAS

Dada la facilidad de transmisión de contaminantes del suelo a otros medios como el agua o la atmósfera, serán estos factores los que generan efectos nocivos, aun siendo el suelo el responsable indirecto del daño.

La presencia de contaminantes en un suelo supone la existencia de potenciales efectos nocivos para el hombre, la fauna en general y la vegetación. Estos efectos tóxicos dependerán de las características toxicológicas de cada contaminante y de la concentración del mismo. La enorme variedad de sustancias contaminantes existentes implica un amplio espectro de afecciones toxicológicas cuya descripción no es objeto de este trabajo.

De forma general, la presencia de contaminantes en el suelo se refleja de forma directa sobre la vegetación induciendo su degradación, la reducción del numero de especies presentes en ese suelo, y más frecuentemente la acumulación de contaminantes en las plantas, sin generar daños notables en estas. En el hombre, los efectos se restringen a la ingestión y contacto dérmico, que en algunos casos a desembocado en intoxicaciones por metales pesados y más fácilmente por compuestos orgánicos volátiles o semivolátiles.

Indirectamente, a través de la cadena trófica, la incidencia de un suelo contaminado puede ser más relevante. Absorbidos y acumulados por la vegetación, los contaminantes del suelo pasan a la fauna en dosis muy superiores a las que podrían hacerlo por ingestión de tierra.

Cuando estas sustancias son bioacumulables el riesgo se amplifica al incrementarse las concentraciones de contaminantes a medida que ascendemos en la cadena trófica, en cuya cima se encuentra el hombre.

Las precipitaciones ácidas sobre determinados suelos originan, gracias a la capacidad intercambiadora del medio edáfico, la liberación del ion aluminio, desplazándose hasta ser absorbido en exceso por las raíces de las plantas, afectando a su normal desarrollo.

En otros casos, se produce una disminución de la presencia de las sustancias químicas en el estado favorables para la asimilación por las plantas. Así pues, al modificarse el pH del suelo, pasando de básico a ácido, el ion manganeso que está disuelto en el medio acuoso del suelo se oxida, volviéndose insoluble e inmovilizándose.

A este hecho hay que añadir que cuando el pH es bajo las partículas coloidales como los óxidos de hierro, titanio, cinc, etc.… que pueden estar presentes en el medio hídrico, favorecen la oxidación del ion manganeso.

Esta oxidación se favorece aun más en suelos acidificados bajo la incidencias de la luz solar en las capas superficiales de los mismos, produciéndose una actividad fotoquímica de las partículas coloidales anteriormente citadas, ya que tienen propiedades semiconductoras.

Otro proceso es el de la biometilización, que es un proceso por el cual reaccionan los iones metálicos y determinadas sustancias orgánicas naturales, cambiando radicalmente las propiedades físico-químicas del metal. Es el principal mecanismo de movilización natural de los cationes de metales pesados.

Los metales que ofrecen más afinidad para este proceso son: mercurio, plomo, arsénico y cromo.

Los compuestos argometálicos así formados suelen ser muy liposolubles y salvo casos muy puntuales, las consecuencias de la biometilización natural son irrelevantes, cuando los mentales son añadidos externamente en forma de vertidos incontrolados, convirtiéndose realmente en un problema.

Aparte de los anteriores efectos comentados de forma general, hay otros efectos inducidos por un suelo contaminado:

• Degradación paisajística: la presencia de vertidos y acumulación de residuos en lugares no acondicionados, generan una perdida de calidad del paisaje, a la que se añadiría en los casos más graves el deterioro de la vegetación, el abandono de la actividad agropecuaria y la desaparición de la fauna.

• Perdida de valor del suelo: económicamente, y sin considerar los costes de la recuperación de un suelo, la presencia de contaminantes en un área supone la desvalorización de la misma, derivada de las restricciones de usos que se impongan a este suelo, y por tanto, una perdida económica para sus propietarios.

2.6 CONTROL

Se puede definir el tratamiento y recuperación de suelos contaminados como un conjunto de operaciones que se deben realizar con el objetivo de controlar, disminuir o eliminar los contaminantes y sus efectos.

Una de las posibles divisiones de los sistemas de tratamiento se establece en función de tres categorías de actuación:

2.6.1 No recuperación

Cuando se opta por la medida de no recuperación del espacio, se debe tener en cuenta que se parte de un espacio contaminado, aunque el estudio de viabilidad determine esa opción. Así pues, se tiene que registrar la localización real del espacio.

Esta sencilla solución evita una gama de problemas importantes generados a posterior, por un uso del suelo para el que ya no es adecuado (agricultura, residencial, espacios de ocio,…).

2.6.2 Contención o aislamiento

Consiste en establecer medidas correctas de seguridad que puedan controlar la situación presente, impidiendo la progresión de la contaminación en el medio y mitigando riesgos relacionados con esta dispersión de contaminantes.

• Aislamiento: Consiste en aislar el foco emisor de la contaminación, limitando el potencial de migración y difusión de los contaminantes mediante la construcción de barreras superficiales y/o subterráneas, de forma que se impida la movilización horizontal de los contaminantes. Esta tecnología suele usarse como medida temporal para evitar la generación de lixiviados, la entrada de los contaminantes en los cursos de agua o la infiltración en las aguas subterráneas.

• Reducción de las volatilizaciones: Pretende suprimir las corrientes de aire, para evitar la volatilización de compuestos orgánicos. Los métodos incluyen la reducción del volumen de poros del suelo, mediante la adición de agua, o por compactación o el sellado de la capa superficial del suelo mediante coberturas(con membranas sintéticas, arcillas, asfalto, cemento,…).

• Control de lixiviados: El objeto es impedir la dispersión de contaminantes a través de las aguas recogiendo los lixiviados procedentes del suelo contaminado en aquellas situaciones en que ello sea posible, como en vertederos controlados de residuos sólidos urbanos. Otro sistema de control consiste en el bombeo de las aguas subterráneas afectadas por la lixiviación de los contaminantes.


EL AGUA

El agua constituye un elemento natural indispensable para el desarrollo de la vida y de las actividades humanas; resulta difícil imaginar cualquier tipo de actividad en la que no se utilice, de una u otra forma.

En nuestro planeta cubre el 75% de su superficie, pero no toda el agua se encuentra en condiciones aptas para el uso humano. El 97.5% del agua es salada, el 2.5% resultante es agua dulce distribuida en lagos, ríos, arroyos y embalses; esta mínima proporción es la que podemos utilizar con mas facilidad.

El agua para satisfacer distintas necesidades se transforma en un recurso. Sin embargo no todas las personas disponen de él. Esto sucede por varios motivos, entre los cuales se puede mencionar la desigual distribución natural del agua en la superficie terrestre. Esta imposibilidad lleva a situaciones de escasez, que no tiene causas exclusivamente naturales, sino que también sociales. Esto nos permite decir que existe una estrecha relación entre la posibilidad de abastecimiento y el desarrollo, porque cuanto mayor es el desarrollo, mayor es la capacidad para obtenerla y mayor es la contaminación.

La humanidad requiere el agua cada vez en mayores cantidades para realizar sus actividades. El mayor consumo de agua también se debe al incremento de las practicas de irrigación agrícolas, al gran desarrollo industrial o a la existencia de hábitos de consumo que, en ocasiones, implican su derroche.

MULTIPLES USOS DEL AGUA

El consumo de agua varia según el tipo de actividad para el cual se emplea. La agricultura de irrigación es la que demanda mayor cantidad; a ella le sigue la industria y en el ultimo termino el consumo domestico.

En el caso de la agricultura, debemos considerar que mediante la irrigación artificial se logra incrementar la producción de alimentos. En el proceso industrial, el agua también es imprescindible: algunas industrias usan agua potable para elaborar sus productos, mientras que la mayoría la utilizan en sus procesos productivos, como refrigerante o como diluyente de efluentes.

En el caso del consumo doméstico se tiene en cuenta el uso en la higiene personal, el lavado de utensilios, cocina, bebida, lavado de autos, riego de jardines, etc.

En la actualidad, por ejemplo, la agricultura representa mas del 90% del consumo global de agua dulce continental; el resto se distribuye entre la industria y el uso domestico. El problema de la distribución del agua con respecto a las sociedades que la consumen ha generado respuestas tecnológicas variadas. Los antiguos romanos construyeron acueductos y norias.

LA CONTAMINACIÓN DE AGUAS

El problema de la contaminación de las aguas dulces es conocido de antiguo. Uno de los primeros testimonios históricos lo constituye el relato de las Sagradas Escrituras (Éxodo, 7, 14-25) acerca de una de las diez plagas de Egipto, en la que se describe la transformación en "sangre" de las aguas del río Nilo. Dicho fenómeno fue sin duda debido a la contaminación biológica producida por microorganismos (algas, bacterias sulfurosas o dinofíceos). Con el incremento de la población y el surgimiento de la actividad industrial la polución de ríos, lagos y aguas subterráneas aumenta constantemente. La Organización Mundial de la Salud define a la polución de las aguas dulces de la siguiente manera: "Debe considerarse que un agua está polucionada, cuando su composición o su estado están alterados de tal modo que ya no reúnen las condiciones a una u otra o al conjunto de utilizaciones a las que se hubiera destinado en su estado natural".

La OMS ha establecido, también, los límites máximos para la presencia de sustancias nocivas en el agua de consumo humano:

Sustancias Concent. Máxima (mg/l)

Sales totales 2000

Cloruros 600

Sulfatos 300

Nitratos 45

Nitritos No debe haber

Amoníaco 0,5

Mat. Org. 3

Calcio 80

Magnesio 50

Arsénico 0,05

Cadmio 0,01

Cianuros 0,05

Plomo 0,1

Mercurio 0,001

Selenio 0,01

Hidrocarburos aromáticos policíclicos 0,0002

Biocidas No hay datos

De acuerdo a la definición que da la OMS para la contaminación debe considerarse también, tanto las modificaciones de las propiedades físicas, químicas y biológicas del agua, que pueden hacer perder a ésta su potabilidad para el consumo diario o su utilización para actividades domésticas, industriales, agrícolas, etc., como asimismo los cambios de temperatura provocados por emisiones de agua caliente (polución térmica).

En realidad, siempre hay una contaminación natural originada por restos animales y vegetales y por minerales y sustancias gaseosas que se disuelven cuando los cuerpos de agua atraviesan diferentes terrenos.

Los materiales orgánicos, mediante procesos biológicos naturales de biodegradación en los que intervienen descomponedores acuáticos (bacterias y hongos), son degradados a sustancias más sencillas. En estos procesos es fundamental la cantidad de oxígeno disuelto en el agua porque los descomponedores lo necesitan para vivir y para producir la biodegradación.

SUSTANCIAS CONTAMINANTES DEL AGUA

Hay un gran numero de contaminantes del agua que se pueden clasificar de muy diferentes maneras. Una posibilidad bastante usada es agruparlos en los siguientes ocho grupos:

• Microorganismos Patógenos.

Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el cólera, tifus, gastroenteritis diversas, hepatitis, etc. En los países en vías de desarrollo las enfermedades producidas por estos patógenos son uno de los motivos más importantes de muerte prematura, sobre todo de niños.

Normalmente estos microbios llegan al agua en las heces y otros restos orgánicos que producen las personas infectadas. Por esto, un buen índice para medir la salubridad de las aguas, en lo que se refiere a estos microorganismos, es el número de bacterias coliformes presentes en el agua. La OMS (Organización Mundial de la Salud) recomienda que en el agua para beber haya 0 colonias de coliformes por 100 ml de agua.

• Desechos Orgánicos.

Son el conjunto de residuos orgánicos producidos por los seres humanos, ganado, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aeróbicas, es decir en procesos con consumo de oxígeno. Cuando este tipo de desechos se encuentran en exceso, la proliferación de bacterias agota el oxígeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxígeno. Buenos índices para medir la contaminación por desechos orgánicos son la cantidad de oxigeno disuelto, OD, en agua, o la DBO (Demanda Biológica de oxigeno).

• Sustancias Químicas Inorgánicas.

En este grupo están incluidos ácidos, sales y metales tóxicos como el mercurio y el plomo. Si están en cantidades altas pueden causar graves daños a los seres vivos, disminuir los rendimientos agrícolas y corroer los equipos que se usan para trabajar con el agua.

• Nutrientes Vegetales Inorgánicos.

Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofización de las aguas. Cuando estas algas y otros vegetales mueren, al ser descompuestos por los microorganismos, se agota el oxígeno y se hace imposible la vida de otros seres vivos. El resultado es un agua maloliente e inutilizable.

• Compuestos Orgánicos.

Muchas moléculas orgánicas como petróleo, gasolina, plásticos, plaguicidas, disolventes, detergentes, etc..., acaban en el agua y permanecen, en algunos casos, largos períodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difíciles de degradar por los microorganismos.

• Sedimentos Y Materiales Suspendidos.
Muchas partículas arrancadas del suelo y arrastradas a las aguas, junto con otros materiales que hay en suspensión en las aguas, son, en términos de masa total, la mayor fuente de contaminación del agua. La turbidez que provocan en el agua dificulta la vida de algunos organismos, y los sedimentos que se van acumulando destruyen sitios de alimentación o desove de los peces, rellenan lagos o pantanos y obstruyen canales, rías y puertos.

• Sustancias Radiactivas.
Isótopos radiactivos solubles pueden estar presentes en el agua y, a veces, se pueden ir acumulando a los largo de las cadenas tróficas, alcanzando concentraciones considerablemente más altas en algunos tejidos vivos que las que tenían en el agua.

Contaminación Térmica.
El agua caliente liberada por centrales de energía o procesos industriales eleva, en ocasiones, la temperatura de ríos o embalses con lo que disminuye su capacidad de contener oxígeno y afecta a la vida de los organismos

CONCEPTO DE EUTROFIZACIÓN

Un río, un lago o un embalse sufren eutrofización cuando sus aguas se enriquecen en nutrientes. Podría parecer a primera vista que es bueno que las aguas estén bien repletas de nutrientes, porque así podrían vivir más fácil los seres vivos. Pero la situación no es tan sencilla. El problema está en que si hay exceso de nutrientes crecen en abundancia las plantas y otros organismos. Más tarde, cuando mueren, se pudren y llenan el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo drásticamente su calidad.

El proceso de putrefacción consume una gran cantidad del oxígeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. El resultado final es un ecosistema casi destruido.

Agua eutrófica y oligotrófica
Cuando un lago o embalse es pobre en nutrientes (oligotrófico) tiene las aguas claras, la luz penetra bien, el crecimiento de las algas es pequeño y mantiene a pocos animales. Las plantas y animales que se encuentran son los característicos de aguas bien oxigenadas como las truchas.

Al ir cargándose de nutrientes el lago se convierte en eutrófico. Crecen las algas en gran cantidad con lo que el agua se enturbia. Las algas y otros organismos, cuando mueren, son descompuestos por la actividad de las bacterias con lo que se gasta el oxígeno. No pueden vivir peces que necesitan aguas ricas en oxígeno, por eso en un lago de estas características encontraremos barbos, percas y otros organismos de aguas poco ventiladas. En algunos casos se producirán putrefacciones anaeróbicas acompañadas de malos olores Las aguas son turbias y de poca calidad desde el punto de vista del consumo humano o de su uso para actividades deportivas. El fondo del lago se va rellenando de sedimentos y su profundidad va disminuyendo.

Nutrientes que eutrofizan las aguas
Los nutrientes que más influyen en este proceso son los fosfatos y los nitratos. En algunos ecosistemas el factor limitante es el fosfato, como sucede en la mayoría de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrógeno para la mayoría de las especies de plantas.

En los últimos 20 o 30 años las concentraciones de nitrógeno y fósforo en muchos mares y lagos casi se han duplicado. La mayor parte les llega por los ríos. En el caso del nitrógeno, una elevada proporción (alrededor del 30%) llega a través de la contaminación atmosférica. El nitrógeno es más móvil que el fósforo y puede ser lavado a través del suelo o saltar al aire por evaporación del amoniaco o por desnitrificación. El fósforo es absorbido con más facilidad por las partículas del suelo y es arrastrado por la erosión erosionadas o disuelto por las aguas de escorrentía superficiales.

En condiciones naturales entra a un sistema acuático menos de 1Kg de fosfato por hectárea y año. Con los vertidos humanos esta cantidad sube mucho. Durante muchos años los jabones y detergentes fueron los principales causantes de este problema. En las décadas de los 60 y 70 el 65% del peso de los detergentes era un compuesto de fósforo, el tripolifosfato sódico, que se usaba para "sujetar" (quelar) a los iones Ca, Mg, Fe y Mn. De esta forma se conseguía que estos iones no impidieran el trabajo de las moléculas surfactantes que son las que hacen el lavado. Estos detergentes tenían alrededor de un 16% en peso de fósforo. El resultado era que los vertidos domésticos y de lavanderías contenían una gran proporción de ión fosfato. A partir de 1973 Canadá primero y luego otros países, prohibieron el uso de detergentes que tuvieran más de un 2,2% de fósforo, obligando así a usar otros quelantes con menor contenido de este elemento. Algunas legislaciones han llegado a prohibir los detergentes con más de 0,5% de fósforo.

Fuentes de eutrofización

• Eutrofización Natural.
La eutrofización es un proceso que se va produciendo lentamente de forma natural en todos los lagos del mundo, porque todos van recibiendo nutrientes.

• Eutrofización De Origen Humano.
Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces, en un grave problema de contaminación. Las principales fuentes de eutrofización son:

• los vertidos urbanos, que llevan detergentes y desechos orgánicos

• Los vertidos ganaderos y agrícolas, que aportan fertilizantes, desechos orgánicos y otros residuos ricos en fosfatos y nitratos.

Medida del grado de eutrofización
Para conocer el nivel de eutrofización de un agua determinada se suele medir el contenido de clorofila de algas en la columna de agua y este valor se combina con otros parámetros como el contenido de fósforo y de nitrógeno y el valor de penetración de la luz.

Medidas para evitar la eutrofización
Lo más eficaz para luchar contra este tipo de contaminación es disminuir la cantidad de fosfatos y nitratos en los vertidos, usando detergentes con baja proporción de fosfatos, empleando menor cantidad de detergentes, no abonando en exceso los campos, usando los desechos agrícolas y ganaderos como fertilizantes, en vez de verterlos, etc. En concreto:

• Tratar las aguas residuales en EDAR (estaciones depuradoras de aguas residuales) que incluyan tratamientos biológicos y químicos que eliminan el fósforo y el nitrógeno.

• Almacenar adecuadamente el estiércol que se usa en agricultura.

• Usar los fertilizantes más eficientemente.

• Cambiar las prácticas de cultivo a otras menos contaminantes. Así, por ejemplo, retrasar el arado y la preparación de los campos para el cultivo hasta la primavera y plantar los cultivos de cereal en otoño asegura tener cubiertas las tierras con vegetación durante el invierno con lo que se reduce la erosión.

Reducir las emisiones de NOx y amoniaco.

CAUSAS DE LA CONTAMINACIÓN

DEL AGUA

La contaminación del agua causada por las actividades del hombre es un fenómeno ambiental de importancia, se inicia desde los primeros intentos de industrialización, para transformarse en un problema generalizado, a partir de la revolución industrial, iniciada a comienzos del siglo XIX.

Los procesos de producción industrial iniciados en esta época requieren la utilización de grandes volúmenes de agua para la transformación de materias primas, siendo los efluentes de dichos procesos productivos, vertidos en los cauces naturales de agua (ríos, lagos) con desechos contaminantes.

Desde entonces, esta situación se ha repetido en todos los países que han desarrollado la industrialización, y aún cuando la tecnología ha logrado reducir de alguna forma el volumen y tipo de contaminantes vertidos a los cauces naturales de agua, ello no ha ocurrido ni en la forma ni en la cantidad necesarias para que el problema de contaminación de las aguas esté resuelto.

La contaminación del agua se produce a través de la introducción directa o indirecta en los cauces o acuíferos de sustancias sólidas, líquidas, gaseosas, así como de energía calórica, entre otras. Esta contaminación es causante de daños en los organismos vivos del medio acuático y representa, además, un peligro para la salud de las personas y de los animales.

Existen dos formas a través de las cuales se puede contaminar el agua. Una de ellas es por medio de contaminantes naturales, es decir, el ciclo natural del agua puede entrar en contacto con ciertos constituyentes contaminantes que se vierten en las aguas, atmósfera y corteza terrestre. Por ejemplo, sustancias minerales y orgánicas disueltas o en suspensión, tales como arsénico, cadmio, bacterias, arcillas, materias orgánicas, etc.

Otra forma es a través de los contaminantes generados por el hombre o de origen humano, y son producto de los desechos líquidos y sólidos que se vierten directa o indirectamente en el agua. Por ejemplo, las sustancias de sumideros sanitarios, sustancias provenientes de desechos industriales y las sustancias empleadas en el combate de plagas agrícolas y/o vectores de enfermedades.

CONSECUENCIA DE LA CONTAMINACIÓN

Los efectos de la contaminación del agua incluyen los que afectan a la salud humana. La presencia de nitratos (sales del ácido nítrico) en el agua potable puede producir una enfermedad infantil que en ocasiones es mortal. El presente en los fertilizantes derivados del cieno o lodo puede ser absorbido por las cosechas, de ser ingerida en cantidad suficiente, el metal puede producir un trastorno diarreico agudo, así como lesiones en el hígado y los riñones.

Hace tiempo que se conoce o se sospecha de la peligrosidad de sustancias inorgánicas, como el mercurio, el arsénico y el plano.

Los lagos son especialmente vulnerables a la contaminación. Hay un problema, la eutrofización, que se produce cuando el agua se enriquece de modo artificial con nutrientes, lo que produce un crecimiento anormal de las plantas. Los fertilizantes químicos arrastrados por el agua de los campos de cultivo pueden ser los responsables. El proceso de eutrofización puede ocasionar problemas estéticos, como mal sabor y olor, y un acumulamiento de algas o verdín desagradable a la vista así como un crecimiento denso de las plantas con raíces, el agotamiento del oxígeno en las aguas más profundas y la acumulación de sedimentos en el fondo de los lagos, así como otros cambios químicos, tales como la precipitación del carbonato de calcio en las aguas duras, otro problema cada vez más preocupante es la lluvia ácida que ha dejado muchos lagos del Norte y del Este de Europa y del Noroeste de Norteamérica totalmente de provistos de vida

EFECTOS DE LA CONTAMINACIÓN EN RIOS Y LAGOS

Debido a su escasa entrada y salida de agua, los lagos sufren graves problemas de contaminación.

Los ríos, por su capacidad de arrastre y el movimiento de las aguas, son capaces de soportar mayor cantidad de contaminantes. Sin embargo, la presencia de tantos residuos domésticos, fertilizantes, pesticidas y desechos industriales altera la flora y fauna acuáticas. En las aguas no contaminadas existe cierto equilibrio entre los animales y los vegetales, que se rompe por la presencia de materiales extraños. Así, algunas especies desaparecen mientras que otras se reproducen en exceso. Además, las aguas adquieren una apariencia y olor desagradables. Los ríos constituyen la principal fuente de abastecimiento de agua potable de las poblaciones humanas. Su contaminación limita la disponibilidad de este recurso imprescindible para la vida.

ALTERACIONES FÍSICAS DEL AGUA

Alteraciones físicas del agua

Alteraciones físicas Características y contaminación que indica

Color El agua no contaminada suele tener ligeros colores rojizos, pardos, amarillentos o verdosos debido, principalmente, a los compuestos húmicos, férricos o los pigmentos verdes de las algas que contienen..

Las aguas contaminadas pueden tener muy diversos colores pero, en general, no se pueden establecer relaciones claras entre el color y el tipo de contaminación

Olor y sabor Compuestos químicos presentes en el agua como los fenoles, diversos hidrocarburos, cloro, materias orgánicas en descomposición o esencias liberadas por diferentes algas u hongos pueden dar olores y sabores muy fuertes al agua, aunque estén en muy pequeñas concentraciones. Las sales o los minerales dan sabores salados o metálicos, en ocasiones sin ningún olor.

Temperatura El aumento de temperatura disminuye la solubilidad de gases (oxígeno) y aumenta, en general, la de las sales. Aumenta la velocidad de las reacciones del metabolismo, acelerando la putrefacción. La temperatura óptima del agua para beber está entre 10 y 14ºC.

Las centrales nucleares, térmicas y otras industrias contribuyen a la contaminación térmica de las aguas, a veces de forma importante.

Materiales en suspensión Partículas como arcillas, limo y otras, aunque no lleguen a estar disueltas, son arrastradas por el agua de dos maneras: en suspensión estable (disoluciones coloidales); o en suspensión que sólo dura mientras el movimiento del agua las arrastra. Las suspendidas coloidalmente sólo precipitarán después de haber sufrido coagulación o floculación (reunión de varias partículas)

Radiactividad Las aguas naturales tienen unos valores de radiactividad, debidos sobre todo a isótopos del K. Algunas actividades humanas pueden contaminar el agua con isótopos radiactivos.

Espumas Los detergentes producen espumas y añaden fosfato al agua (eutrofización). Disminuyen mucho el poder autodepurador de los ríos al dificultar la actividad bacteriana. También interfieren en los procesos de floculación y sedimentación en las estaciones depuradoras.

Conductividad El agua pura tiene una conductividad eléctrica muy baja. El agua natural tiene iones en disolución y su conductividad es mayor y proporcional a la cantidad y características de esos electrolitos. Por esto se usan los valores de conductividad como índice aproximado de concentración de solutos. Como la temperatura modifica la conductividad las medidas se deben hacer a 20ºC.

Alteraciones químicas del agua

Alteraciones químicas Contaminación que indica

pH Las aguas naturales pueden tener pH ácidos por el CO2 disuelto desde la atmósfera o proveniente de los seres vivos; por ácido sulfúrico procedente de algunos minerales, por ácidos húmicos disueltos del mantillo del suelo. La principal sustancia básica en el agua natural es el carbonato cálcico que puede reaccionar con el CO2 formando un sistema tampón carbonato / bicarbonato.

Las aguas contaminadas con vertidos mineros o industriales pueden tener pH muy ácido. El pH tiene una gran influencia en los procesos químicos que tienen lugar en el agua, actuación de los floculantes, tratamientos de depuración, etc.

Oxigeno disuelto (OD) Las aguas superficiales limpias suelen estar saturadas de oxígeno, lo que es fundamental para la vida. Si el nivel de oxígeno disuelto es bajo indica contaminación con materia orgánica, septicización, mala calidad del agua e incapacidad para mantener determinadas formas de vida.

Materia orgánica biodegradable: Demanda Bioquímica de Oxígeno (DBO5) DBO5 es la cantidad de oxígeno disuelto requerido por los microorganismos para la oxidación aerobia de la materia orgánica biodegradable presente en el agua. Se mide a los cinco días. Su valor da idea de la calidad del agua desde el punto de vista de la materia orgánica presente y permite prever cuanto oxígeno será necesario para la depuración de esas aguas e ir comprobando cual está siendo la eficacia del tratamiento depurador en una planta.

Materiales oxidables: Demanda Química de Oxígeno (DQO) Es la cantidad de oxígeno que se necesita para oxidar los materiales contenidos en el agua con un oxidante químico (normalmente dicromato potásico en medio ácido). Se determina en tres horas y, en la mayoría de los casos, guarda una buena relación con la DBO por lo que es de gran utilidad al no necesitar los cinco días de la DBO. Sin embargo la DQO no diferencia entre materia biodegradable y el resto y no suministra información sobre la velocidad de degradación en condiciones naturales.

Nitrógeno total Varios compuestos de nitrógeno son nutrientes esenciales. Su presencia en las aguas en exceso es causa de eutrofización.

El nitrógeno se presenta en muy diferentes formas químicas en las aguas naturales y contaminadas. En los análisis habituales se suele determinar el NTK (nitrógeno total Kendahl) que incluye el nitrógeno orgánico y el amoniacal. El contenido en nitratos y nitritos se da por separado.

Fósforo total El fósforo, como el nitrógeno, es nutriente esencial para la vida. Su exceso en el agua provoca eutrofización.

El fósforo total incluye distintos compuestos como diversos ortofosfatos, polifosfatos y fósforo orgánico. La determinación se hace convirtiendo todos ellos en ortofosfatos que son los que se determinan por análisis químico.

Aniones:

cloruros

nitratos

nitritos

fosfatos

sulfuros

cianuros

fluoruros indican salinidad

indican contaminación agrícola

indican actividad bacteriológica

indican detergentes y fertilizantes

indican acción bacteriológica anaerobia (aguas negras, etc.)

indican contaminación de origen industrial

En algunos casos se añaden al agua para la prevención de las caries, aunque es una práctica muy discutida.

Cationes:

sodio

calcio y magnesio

amonio

metales pesados

indica salinidad

están relacionados con la dureza del agua

contaminación con fertilizantes y heces

de efectos muy nocivos; se bioacumulan en la cadena trófica; (se estudian con detalle en el capítulo correspondiente)

Compuestos orgánicos Los aceites y grasas procedentes de restos de alimentos o de procesos industriales (automóviles, lubricantes, etc.) son difíciles de metabolizar por las bacterias y flotan formando películas en el agua que dañan a los seres vivos.

Los fenoles pueden estar en el agua como resultado de contaminación industrial y cuando reaccionan con el cloro que se añade como desinfectante forman clorofenoles que son un serio problema porque dan al agua muy mal olor y sabor.

La contaminación con pesticidas, petróleo y otros hidrocarburos se estudia con detalle en los capítulos correspondientes.

Alteraciones biológicas del agua

Alteraciones biológicas del agua Contaminación que indican

Bacterias coliformes Desechos fecales

Virus Desechos fecales y restos orgánicos

Animales, plantas, microorganismos diversos Eutrofización

PETROLEO EN EL MAR

En nuestras sociedades el petróleo y sus derivados son imprescindibles como fuente de energía y para la fabricación de múltiples productos de la industria química, farmacéutica, alimenticia, etc.

Por otro lado, alrededor del 0,1 al 0,2% de la producción mundial de petróleo acaba vertido al mar. El porcentaje puede parecer no muy grande pero son casi 3 millones de toneladas las que acaban contaminando las aguas cada año, provocando daños en el ecosistema marino.

La mayor parte del petróleo se usa en lugares muy alejados de sus puntos de extracción por lo que debe ser transportado por petroleros u oleoductos a lo largo de muchos kilómetros, lo que provoca espectaculares accidentes de vez en cuando. Estas fuentes de contaminación son las más conocidas y tienen importantes repercusiones ambientales, pero la mayor parte del petróleo vertido procede de tierra, de desperdicios domésticos, automóviles y gasolineras, refinerías, industrias, etc.

Se han ensayado distintas técnicas para limitar o limpiar los vertidos del petróleo. Pronto se comenzaron a usar detergentes y otros productos, pero en el accidente del Torrey Canyon se comprobó que los productos de limpieza utilizados habían causado más daño ecológico que el propio petróleo vertido.

Actualmente se emplean productos de limpieza menos dañinos y diferentes técnicas y maquinarias, como barreras flotantes, sistemas de recogida, etc., que en algunos casos pueden ser bastantes eficaces, aunque no son la solución definitiva. Evitar la contaminación es la única solución verdaderamente aceptable.

Cantidad y origen del petróleo vertido al mar

No es fácil calcular la cantidad y el origen de petróleo que llega al mar y, de hecho, sólo disponemos de valores poco exactos. Valores estimados según diversos estudios son:

Año Toneladas vertidas

1973 6.110.000

1979 4.670.000

1981 3.570.000

1983 3.200.000

1985/1989 2.400.000

Entre los estudios que se han hecho destacan los de la National Academy of Sciences de los EEUU. Publicó su primer informe en 1975 (datos correspondientes al año 1973) y posteriormente otro en 1985 (con algunas cifras completadas en 1989). Con datos extraídos de estos informes, y de otras fuentes, se puede resumir que la cifra global de petróleo que llega al mar cada año es de unas 3.000.000 toneladas métricas (rango posible entre 1.7 y 8.8 millones de toneladas), y la procedencia de este petróleo vertido al mar sería:

Por causas naturales 10%

Desde tierra 64% (de ellas un 15 a un 30% por aire )

Por funcionamiento de petroleros 7%

Por accidentes 5%

Por explotaciones petróleo en mar 2%

Por otros buques 12%

Accidentes

El porcentaje vertido por accidentes es de alrededor de un 5% y, aunque en proporción no es la mayor fuente de contaminación, los desastres ambientales que originan son muy importantes, porque producen vertidos de masas de petróleo muy concentradas y forman manchas de gran extensión. En algunos accidentes se han llegado a derramar más de 400 000 toneladas, como en la rotura de una plataforma marina en el Golfo de México, en 1979. En la Guerra del Golfo, aunque no propiamente por accidente, sino por una combinación de acciones de guerra y sabotajes, se vertió aún mayor cantidad. Otros, como el vertido del Exon Valdez, en 1989, en Alaska, pueden llegar a costas o lugares de gran interés ecológico y causar extraordinarias mortandades en pájaros, focas y todo tipo de fauna y flora.

Vertidos de petróleo de más de 140 mil toneladas

Año Accidente Lugar Toneladas vertidas

1991 Guerra del Golfo Golfo Pérsico 816 000

1979 Plataforma Ixtoc I México 476 000

1983 Pozo petrolífero Irán 272 000

1992 Oleoducto Uzbekistán 272 000

1983 Petrolero Castillo de Bellver Sudáfrica 267 000

1978 Petrolero Amoco Cádiz Francia 234 000

1988 Petrolero Odyssey Canadá 146 000

1979 Petrolero Atlantic Empress Caribe 145 000

1980 Pozo petrolífero Libia 143 000

1979 Petrolero Atlantic Empress Barbados 141 000

Otros accidentes conocidos o que han sucedido en España

1967 Petrolero Torrey Canyon Reino Unido 130 000

1994 Rotura de oleoducto Rusia 104 000

1976 Petrolero Urquiola La Coruña 95 000

1992 Petrolero Mar Egeo La Coruña 71 000

1989 Petrolero Exxon Valdez Alaska 37 000

Explicación: En el Anuario Internacional de Estadísticas sobre Vertidos Petrolíferos de 1996 venían recogidos 62 casos en los que se han derramado más de 3 400 toneladas (10 millones de galones). En el cuadro se recogen los accidentes con vertidos mayores de 140 000 toneladas y algunos otros casos de especial interés por sus consecuencias o por haber tenido lugar en las costas españolas.

Lavado de tanques

Durante mucho tiempo el lavado de tanques de los petroleros ha sido una de las prácticas más dañinas y que más contaminación por petróleo ha producido. Estos grandes buques hacían el lavado en los viajes de regreso, llenando los tanques con agua del mar que después vertían de nuevo al océano, dejando grandes manchas de petróleo por todas las rutas marítimas que usaban. En los últimos años una legislación más exigente y un sistema de vigilancia y denuncias más eficiente, han conseguido reducir de forma significativa estas prácticas, aunque, por unos motivos o por otros, los petroleros todavía siguen siendo un importante foco de contaminación.

Evolución de las manchas de petróleo

El petróleo vertido se va extendiendo en una superficie cada vez mayor hasta llegar a formar una capa muy extensa, con espesores de sólo décimas de micrómetro. De esta forma se ha comprobado que 1 m3 de petróleo puede llegar a formar, en hora y media, una mancha de 100 m de diámetro y 0,1 mm de espesor.

Una gran parte del petróleo (entre uno y dos tercios) se evapora. El petróleo evaporado es descompuesto por fotooxidación en la atmósfera.

Del crudo que queda en el agua:

• Parte sufre fotooxidación;

• otra parte se disuelve en el agua, siendo esta la más peligrosa desde el punto de vista de la contaminación, y

• Lo que queda forma el "mousse": emulsión gelatinosa de agua y aceite que se convierte en bolas de alquitrán densas, semisólidas, con aspecto asfáltico. Se ha calculado que en el centro del Atlántico hay unas 86 000 toneladas de este material, principalmente en el mar de los Sargazos que tiene mucha capacidad de recoger este tipo de material porque las algas, muy abundantes en esa zona, quedan enganchadas al alquitrán.

Sistemas de limpieza de los vertidos de petróleo

Contención y recogida:

Se rodea el petróleo vertido con barreras y se recupera con raseras o espumaderas que son sistemas que succionan y separan el petróleo del agua por:

Centrifugación, aprovechando que el agua es más pesada que el crudo se consigue que sea expulsada por el fondo del dispositivo que gira, mientras el petróleo es bombeado por la parte superior; Bombeo por aspiración; Adherencia a tambor o discos giratorios, que se introducen en la mancha para que el crudo quede adherido a ellos, luego se desprende rascando y el petróleo que va quedando junto al eje de giro es bombeado a la embarcación de recogida

Fibras absorbentes, en el que se usan materiales plásticos oleofílicos (que adhieren el petróleo) que actúan como una bayeta o "mopa" que absorbe petróleo, luego se exprime en la embarcación de recogida y vuelve a ser empleada para absorber más

Estas técnicas no causan daños y son muy usadas, pero su eficiencia, aun en las mejores condiciones, sólo llega a un 10 - 15%.

Dispersantes:

Son sustancias químicas similares a los detergentes, que rompen el petróleo en pequeñas gotitas (emulsión) con lo que se diluyen los efectos dañinos del vertido y se facilita la actuación de las bacterias que digieren los hidrocarburos. Es muy importante elegir bien la sustancia química que se usa como dispersante, porque con algunas de las que se utilizaron en los primeros accidentes, por ejemplo en el del Torrey Canyon, se descubrió que eran más tóxicas y causaban más daños que el propio petróleo. En la actualidad existen dispersantes de baja toxicidad autorizados.

• Incineración:

Quemar el petróleo derramado suele ser una forma eficaz de hacerlo desaparecer. En circunstancias óptimas se puede eliminar el 95% del vertido. El principal problema de este método es que produce grandes cantidades de humo negro que, aunque no contiene gases más tóxicos que los normales que se forman al quemar el petróleo en la industria o los automóviles, es muy espeso por su alto contenido de partículas.

• Biodegradación:

En la naturaleza existen microorganismos (bacterias y hongos, principalmente) que se alimentan de los hidrocarburos y los transforman en otras sustancias químicas no contaminantes. Este proceso natural se puede acelerar aportando nutrientes y oxígeno que facilitan la multiplicación de las bacterias.

• Limpieza de las costas:

En ocasiones se usan chorros de agua caliente a presión para arrastrar el petróleo desde la línea de costa al agua. Este método suele hacer más mal que bien porque entierra el hidrocarburo más profundamente en la arena y mata todo ser vivo de la playa. Se usó extensamente en el accidente del Exxon Valdez debido a que la opinión pública exigía la limpieza y este método deja aparentemente la playa con un aspecto casi normal. Pero luego se comprobó que las zonas que se habían dejado para que se limpiaran de forma natural, al cabo de unos meses estaban en mejores condiciones que las que se habían sometido al tratamiento, demostrando que consideraciones estéticas a corto plazo no deben imponerse a planteamientos ecológicos más importantes a largo plazo.

No hacer nada:

En los vertidos en medio del océano, o en aquellos en que la limpieza es difícil y poco eficaz, lo mejor es dejar que la acción de las olas, la fotooxidación y otras acciones naturales, acaben solucionando el problema.

• Efectos de la contaminación con petróleo

Los diversos ecosistemas reciben petróleo e hidrocarburos, en cantidades diversas, de forma natural, desde hace millones de años. Por esto es lógico que se encuentren muchos microorganismos capaces de metabolizar el petróleo y que sea frecuente el que muchos seres vivos sean capaces de eliminar el absorbido a través de la cadena alimenticia. No parece que es muy importante la amenaza de bioacumulación del petróleo y los productos relacionados en la cadena alimenticia, aunque en algunas ocasiones, en localidades concretas, puede resultar una amenaza para la salud, incluso humana.

Hay diferencias notables en el comportamiento de diferentes organismos ante la contaminación con petróleo. Los moluscos bivalvos (almejas, mejillones, etc.). Por ejemplo, muestran muy baja capacidad de eliminación del contaminante y, aunque muchos organismos (algunos peces, por ejemplo) no sufren daños importantes con concentraciones del producto de hasta 1000 ppm, algunas larvas de peces se ven afectadas por niveles tan bajos como 1 ppm.

Las aves y los mamíferos se ven afectados por la impregnación de sus plumas y piel por el crudo, lo que supone su muerte en muchas ocasiones porque altera su capacidad de aislamiento o les impermeabiliza.

Los daños no sólo dependen de la cantidad vertida, sino también del lugar, momento del año, tipo de petróleo, etc. Un simple vertido de limpieza de tanques de un barco -el Stylis- mató en Noruega a 30 000 aves marinas en 1981, porque fue arrastrado directamente a la zona donde estas aves tenían sus colonias.

La mayoría de las poblaciones de organismos marinos se recuperan de exposiciones a grandes cantidades de petróleo crudo en unos tres años, aunque si el petróleo es refinado o la contaminación se ha producido en un mar frío, los efectos pueden durar el doble o el triple.

EL AGUA COMO VEHÍCULO DE TRANSMISIÓN DE ENFERMEDADES

El agua de los ríos esta polucionada. Hay veces que el agua potable no es pura. El agua es un vehículo de enfermedades.

Los colibacilos pueden provocar perturbaciones digestivas mas o menos graves, desde la simple diarrea a serias afecciones de las vías biliares y urinarias.

Otros gérmenes, las “salmonellas”, se difunden cada vez mas por los ríos. Ellos son los responsables de las fiebres tifoideas, paratifoides y salmonelosis.

En realidad, los tratamientos encaminados a la esterilización del agua acaban rápidamente con estos gérmenes. No sucede lo mismo con los virus, sobre los cuales los procedimientos actuales (coloración y ozonización) tienen mucho menor efecto.

Sin embargo, los virus son muy numerosos en el agua bombeado por las estaciones depuradoras. El de la hepatitis virial (ictericia infecciosa) es una de las mas frecuentes: sus formas mas benignas pueden manifestarse por algunas perturbaciones digestivas; la mortalidad permanecerá elevada en los enfermos de hígado y las personas de edad. Es un circulo fatídico: durante el periodo de incubación, el enfermo arroja gran numero de virus. Se encuentran entonces en las aguas de las cloacas. Pasan enseguida a los ríos, y después, a través de las estaciones depuradoras vuelven a estar presentes en las aguas de consumo.....

El doctor Leda, director del instituto de Hidrobiología del Instituto Pasteur de Lille, piensa que vivimos en medio de bacterias y virus. No estamos enfermos, sin embargo. Bacterias, virus y parásitos llegan a un estado de equilibrio favorable a la vida en sus formas superiores. Tal vez hay, un efecto, que confiar en los mecanismos de autodefensa que inmunizan naturalmente al hombre, obligándole a ingerir, como si se tratase de una vacuna, cantidades pequeñas de agua polucionada. El problema consiste, sin embargo, en saber hasta donde puede llegar en esta ingestión.

MEDIDAS PARA CONTROL DE TRANSMISION DE ENFERMEDADES

Abastecimiento de agua
• Selección de fuentes no contaminadas, por ejemplo, pozos acuíferos profundos.

• Tratamiento del agua cruda (cloración).

• Reemplazo de abastecimientos contaminados por otros más confiables y seguros.

• Protección de cuencas.

• Control de calidad de agua.

Disposición sanitaria de excretas
• Protección de los sistemas de abastecimiento de agua.

• Protección del medio ambiente.

• Apoyo a las actividades de control de los sistemas de abastecimiento de agua y de disposición de excretas.

• Destrucción, disposición, aislamiento o disolución de residuos fecales.

Educación sanitaria
• Higiene personal.

• Protección del medio ambiente.

• Apoyo a las actividades de control de los sistemas de abastecimiento de agua y de disposición de excretas.

Las enfermedades hídricas se clasifican según su agente transmisor:

• Enfermedades Microbiológicas Trasmitidas Por El Agua:

Son las enfermedades causadas por organismos patógenos presentes en el agua y que ingresan al organismo por la boca. Están relacionadas a la contaminación con excretas humanas. Se caracteriza por ser fácilmente transmisibles por otros medios como ser las manos o los alimentos. En esta categoría se encuentran:

o la fiebre tifoidea:

Es una enfermedad infecciosa aguda producida por el bacilo Salmonella typhi. Se contagia por la leche, el agua o los alimentos contaminados por las heces de enfermos o portadores. Los portadores son personas sanas que sufren una infección asintomático y excretan periódicamente el bacilo. El esquema de transmisión epidemiológica se puede simplificar con las siglas DAME (dedos, alimentos, moscas y excretas). Los organismos llegan al intestino y salen de él para llegar a los ganglios linfáticos mesentéricos, de ahí pueden desplazarse al estomago, al hígado, o bien, seguir por la sangre originando graves daños en el bazo o cerebro. Los síntomas que posee esta enfermedad son: dolor de cabeza, escalofrió, insomnio, decaimiento, aumento gradual de la temperatura.

o Cólera:

Es una grave enfermedad infecciosa endémica de India y en ciertos países tropicales, aunque pueden aparecer brotes en países de clima templado. Los síntomas del cólera son la diarrea y la perdida de líquidos y sales minerales en las heces. En los casos graves hay una diarrea muy importante, con heces características en “agua arroz”, vomito, sed intensa, calambres musculares y, en ocasiones, fallo circulatorio. En estos casos el paciente puede fallecer a las pocas horas del comienzo de los síntomas. Dejada a su evolución natural, la mortalidad es superior al 50%, pero no llega al 1% con el tratamiento adecuado.

El organismo responsable de la enfermedad es el Vibrio Cholerae, una bacteria descubierta en 1883 por el medico y bacteriólogo alemán Robert Koch. La única forma de contagio es a través del agua y los alimentos contaminados por heces (en las que se encuentra la bacteria) de enfermos de cólera. Por tanto, las medidas de control sanitario son las únicas eficaces en la prevención de la enfermedad. Durante el siglo XIX las epidemias de cólera se diseminaron por Europa y EEUU, hasta que mejoraron los sistemas de distribución de agua potable y alcantarillado.

En muchos países asiáticos, el control del cólera sigue siendo un importante problema sanitario. La Organización Mundial de la Salud (OMS) calcula que le 78% de la población de los países en vías de desarrollo carece de agua con suficientes garantías de potabilidad, y el 85% no dispone de un sistema de tratamiento e aguas residuales. Las epidemias más recientes tuvieron lugar en Calcuta (India) en 1953; en Vietnam del sur entre 1964 y 1967; entre los refugiados del Bangla Desh que emigraron a India en la guerra civil de 1971; y en Perú en 1991. En la epidemia del 1971 fallecieron 6500 personas.

El tratamiento consiste en la reposición oral o intravenosa de líquidos y sales minerales (rehidratación). Hay preparaos para diluir con la composición adecuada de sodio, potasio, cloro, bicarbonato y glucosa, disponibles en muchos lugares del mundo gracias a la campaña de difusión realizada por la OMS. Casi todos los pacientes se recuperaron entre los tres y los seis días.

Algunos estudios experimentales han demostrado que la bacteria del cólera produce una toxina que estimula la secreción de liquido por el intestino delgado. Esta toxina es la causa de la gran perdida de líquidos que se producen en el cólera. La búsqueda de una vacuna mas eficaz sigue dos líneas de investigación diferentes: utilizar una toxina inactivada, o utilizar una vacuna de bacterias vivas atenuadas incapaces de producir toxina.

o Disentería amebiana:

Causada por el parásito (ameba) Entamoeba Histolytica es endémica en muchos países tropicales, pero lo mas debido a la falta de condiciones higiénicas que al clima o al calor. Es el tipo de disentería mas frecuente en Filipinas, Indonesia y el Caribe, y se puede dar en algunos países de clima templado.

La disentería amebiana se trasmite por el agua, por los alimentos frescos contaminados y por los portadores humanos sanos. Las moscas pueden trasportar los quistes de ameba desde las heces de los enfermos hasta los alimentos. Cuando la enfermedad se hace crónica las amebas traspasan la pared intestinal y colonizan el hígado, formando abscesos hepáticos. En raras ocasiones se forman abscesos amebianos en otras localizaciones . Si se deja evolucionar, puede llegar a producir la muerte.

o Disentería bacilar

Esta producida por alguna especies no móviles de bacterias del genero Shigella. Esta forma de disentería también es mas frecuente en las regiones tropicales del planeta con higiene deficiente, pero, como es mas contagiosa, se producen brotes epidémicos en todo el mundo. Se trata de una diarrea autolimitada que rara vez sobrepasa la afectación ontestinal; no obstante, la enfermedad es grave, especialmente en niños y ancianos. La disentería bacilar se propaga por la contaminación del agua y los alimentos. Las heces de ,os enfermos y de los portadores sanos contienen grandes cantidades de bacterias. Las moscas transportan las bacterias en sus patas, en sus salivas y en sus heces, y las depositan en los alimentos; al parecer las hormigas también pueden trasmitir la enfermedad.

Para el tratamiento de la disentería bacilar es fundamental la correcta reposición del agua y electrolitos. Como antibióticos se pueden utilizar las sulfoamidas, las tetraciclinas y la estreptomicina.

o Gastritis

Las causas de esta enfermedad son la ingestión de alimentos en malas condiciones o contaminadas con sustancias toxicas o con organismos patógenos. Esta enfermedad lo que produce es una inflamación de las mucosas gástricas. Los síntomas que posee son diarrea, dolor estomacal, falta de apetito, nausea, vomito, agruras, pirosis (elevación de la temperatura)

o Gastroenteritis

Las causas de esta enfermedad son infecciones por ingerir alimentos contaminados por bacterias, virus, hongos o sustancias toxicas, como plomo arsénico o hierro. La gastroenteritis consiste en la inflamación de la mucosa intestinal(enteritis) o de ésta y la del estomago (gastroenteritis).Los síntomas de esta enfermedad son decaimiento, inapetencia, nausea, vomito, diarrea, dolores abdominales, fiebre y malestar general.

• Enfermedades Químicas Trasmitidas Por El Agua:

Son enfermedades asociadas a la ingestión de aguas que contienen sustancias toxicas en concentraciones perjudiciales. Estas sustancia pueden ser de origen natural o artificial, generalmente de localización especifica. Algunos ejemplos son:

  • metahemoglobinemia infantil
Consiste en la presencia de metahemoglobina , que es el producto de la oxidación incompleta de la hemoglobina, en la sangre. Esta ocasionada por el consumo de agua con un elevado porcentaje de nitratos.

  • Fluorosis endémica crónica
Esta producida por una alto contenido de flúor en el agua y cuyos síntomas son la presencia en los dientes permanentes de los niños de manchas de color amarillo parduzco o casi negro y los efectos carcinogénicos, mutagénicos y teratogenicos producidos por altas concentraciones de metales pesados, plaguicidas e hidrocarburos en el agua.

  • Gastroenteritis
Las causas de esta enfermedad son infecciones por ingerir alimentos contaminados por bacterias, virus, hongos o sustancias toxicas, como plomo arsénico o hierro. La gastroenteritis consiste en la inflamación de la mucosa intestinal(enteritis) o de ésta y la del estomago (gastroenteritis).Los síntomas de esta enfermedad son decaimiento, inapetencia, nausea, vomito, diarrea, dolores abdominales, fiebre y malestar general.

• Enfermedades Relacionadas Con La Higiene

Incluyen a muchas enfermedades trasmitidas por vía fecal-oral. Entre ellas se encuentran:

  • Tiña:
Esta relacionada con la higiene de la piel, producida por diversos parásitos vegetales, que producen escamas, costras o la caída del cabello.

  • Tracoma
Es una especie de conjuntivitis granulosa y contagiosa producida por un micrococo.

o Conjuntivitis

Es una enfermedad que ocurre cuando la membrana que cubre el interior de los párpados, y el blanco del ojo, la conjuntiva, se inflama. Es una enfermedad contagiosa. Para eliminarla por lo general se utilizan los antibióticos como el colirio.

o Sarna

Es una enfermedad producida por sarcoptes scabei o arador de la sarna. Este acaro se aloja en la piel y excava túneles en la capa de la cornea donde las hembras depositan los huevos. Cuando estos son numerosos originan un purito intenso, sobre todo lesiones cutáneas que se infectan al rascarse originando dermatitis muy complejas y variadas.

Ahora esta volviendo a surgir con cierta virulencia, se puede reconocer por los surcos grisáceos que las galerías forman en el vientre, axilas y los pliegues de los brazos y senos.

El tratamiento hay que hacerlo intensivo a su familia, desinfectando ropas y habitaciones.

o Ascariasis

Las causas que originan esta enfermedad es la ingestión de agua o alimentos contaminados con huevecillos de lombrices intestinales; puede deberse a cultivos regados con aguas negras o alimentos preparados sin higiene. Los síntomas que posee esta enfermedad son diarrea, mala digestión, adelgazamiento y cuando la infección es masiva, puede haber obstrucciones intestinales.

o Amebiasis

Esta enfermedad esta causada por la ingestión de agua o alimentos contaminados por quistes (especie de huevecillos) de amebas, por falta de higiene o cultivos regados con aguas negras. Los síntomas de la amebiasis son diarreas ligeras o graves que originan deshidratación, fiebre, malestar general, falta de apetito; también puede presentarse ulceraciones intestinales, y si se alojan en el hígado, absceos o hepatitis crónica. Existen algunos casos en que invaden el cerebro.

o Teniasis

Esta enfermedad se presenta por la ingestión de alimentos o agua contaminados con huevecillos de Taenia. La tenia se aloja en el intestino y se alimenta de los nutrientes que llegan a él. Los síntomas mas característicos de esta enfermedad son diarrea, disminución de peso y fiebre.

o Uncinariasis

Se presenta por la ingestión de alimentos o aguas contaminados con huevecillos de uncinarias. Los parásitos muy pequeños pueden llegar a invadir el intestino. Se alimentan de la sangre de la pared intestinal y llegan a causar hemorragias en el organismo.

• Enfermedades Trasmitidas Por Contacto Con El Agua:

Son producidas por microorganismos patógenos que ingresan al cuerpo humano a través de la piel. El ejemplo mas conocido es el de la esquistosomiasis (bicharziasis). Se calcula que en el mundo existen 200 millones de personas afectadas por esta enfermedad epidemica que quizás sea una de las mas antiguas del planea a juzgar por el hallazgo de huevos (o quistes) del agente causal en las momias egipcias. Estos huevos eclosionan en el agua, produciendo larvas que parasitan ciertas especies de caracoles. Los caracoles infectados liberan formas microscópicas móviles que penetran en la piel humana y se desarrollan hasta llegar al estado de gusanos. Estos pueden alcanzar unos 2,5 cm de longitud y se alojan en varios tejidos del cuerpo humano ocasionando grandes daños cuando sus huevos se abren camino hacia el tracto intestinal o urinario.

CONCLUSION

Si todo el mundo tuviera agua segura y limpia se evitarían el 80% de las enfermedades. Casi 2 millones de personas , la mayoría de países en vías de desarrollo no tienen acceso a agua con un mínimo nivel de seguridad.

PUBLICACIONES EN PRENSA

SOBRE EL TEMA TRATADO

CONSUMO DE AGUA CONTAMINADA AFECTA SALUD DE CARACEÑOS

Los habitantes de las riberas del río Los Encuentros, jurisdicción de Jinotepe, Carazo sufren las consecuencias del envenenamiento de las aguas causado por el desecho de tóxicos, lo cual provoca a los lugareños malestares como dolor en el estomago y en la cabeza, la picazón en la piel e inclusive ceguera, según testimonios de la zona. Cierta gente cree que la causa de estos problemas de salud es el lanzamiento indiscriminado de venenos, como el Buxton en las aguas de estas fuentes acuíferas.

Un campesino señaló que el envenenamiento de estos ríos es de vieja data, pero que se agudizo hace doce años, desde que muchos comerciantes e camarón descubrieron que con lanzar veneno al agua, estos flotan en grandes cantidades. Y es que la única fuente de agua para tomar y hacer los alimentos de la familia es el río.

Los niños que allí habitan además de padecer afecciones de salud ya mencionadas, padecen ceguera. Una medre dijo que de sus siete hijos solo dos poseen el problema y asegura que no hay antecedentes en la familia. También comento que cuando estaba embaraza de uno de estos dos hijos, vio sobre las aguas centenares de camarones atontados, los que cocino y posteriormente comió junto con su familia.

Estos tóxicos inducen a la mutación en algunos casos, y estas familias han estado ingiriendo por muchos años aguas fosforadas y cloradas del Río Los Encuentros, que es el que más veneno recibe.

BERAZATEGUI DEMANDO A AGUAS ARGENTINAS POR DAÑO ECOLÓGICO

El municipio de Berazategui presento una demanda judicial contra Aguas Argentinas: le exige una indemnización de 300 millones de dólares por la contaminación del Río de la Plata, ya que la empresa ocasiono serios daños ecológicos en las costas de ese municipio ante el vuelco de efluentes cloacales sin tratamiento. Berazategui es la cloaca de la Capital y Gran Buenos Aires, además de perjudicar la salud de los vecinos, imposibilita la explotación económica de la zona.

En la demanda presentada ante la justicia, la comuna habla de concentraciones elevadas de nitritos, amonio y otros contaminantes, dentro de la zona de descargas.

MILLONES DE LITROS DE DESECHOS CLOACALES SE VIERTEN EN EL RIO

Denuncian que lasa aguas del Río de la Plata tienen un nivel intolerable de PBC (bifelinos policlorados). E ministerio de producción bonaerense prohibió la pesca y comercialización del sábalo. Mas de dos millones de metros cúbicos de desechos cloacales sin tratamiento se vierten diariamente en el Río de la Plata. La ingesta de estos animales contaminados puede provocar cáncer. Además, los bifelinos, que tardan décadas en descomponerse, se trasmiten a través de la placenta. Así, el hijo de una mujer contaminada podría verse afectado, con malformaciones genéticas o trastornos en el comportamiento y en el aprendizaje. El PBC y otros compuestos químicos son arrojados a arroyos y canales por algunas industrias.

LA SITUACIÓN YA ES GRAVE O, PEOR, IRREVERSIBLE -RIO DE LA PLATA Y FRENTE ATLÁNTICO-

Emisarios submarinos son concebidos dentro de la filosofía de esconder la mugre bajo el tapete. A pesar de su enorme caudal, y de ser el más ancho del mundo, el Río de la Plata o Mar Dulce no escapa al fenómeno de la contaminación hídrica. Algunos de los hechos ocurridos son:

• Las aguas residuales arrojadas al arroyo Rosario (Uruguay, cuyas aguas desembocan al Río de la Plata) por la principal planta industrial de lácteos, ocasiono la muerte de todos los cangrejos, peces, tortugas y otros animales pequeños.

• La analítica realizada por Greenpeace de aguas y sedimentos recogidos en la inmediaciones de la planta Repsol-YPF indica que el área contaminada por derivados del petróleo, así como por metales pesados -cobre, plomo, mercurio, zinc y magnesio. Los compuestos encontrados son tóxicos para los organismos acuáticos y, en los seres humanos, pueden provocar daños en distintos órganos, alteraciones en el sistema nervioso central y cáncer.

• Según un informe el Río de la Plata, las aguas superficiales y subterráneas están contaminadas y los basurales tienen residuos sólidos incontrolados, pese a que contienen desechos peligrosos. El informe revela, además, que en las zonas cercanas a la costa tienen valores altos de plomo y zinc producidos por la actividad industrial. Y también sufre de contaminación bacteriológica, ya que sus aguas tienen un alto porcentaje de cloruros que provienen de las sales expulsadas por orina y heces. El fondo del río, profundo y rocoso, de aguas claras en siglos anteriores, se ha venido llenando de detritus, no solo de tierras de labranza sino también de residuos industriales y de la descarga de miles de toneladas diarias de obsoletos sistemas sanitarios que utilizan poblaciones costeras de millones de habitantes.

• Conclusiones del Río de la Plata:

• la gran cantidad de sedimentos finos cumpliría la función de filtro fijando metales pesados y otros compuestos perjudiciales para la salud humana. La dilución de los contaminantes resulta muy importante dado el gran volumen del cuerpo receptor.

• Hoy el río esta siendo utilizado como cloaca y bebedero al mismo tiempo.

• No se tiene en cuenta el riesgo en la salud que la contaminación e las aguas pueden provocar

• Esta nueva situación pone en peligro las capas freáticas que cobijan el agua que todos bebemos.

• Famosas playas, en ambas orillas han sido vedadas al uso publico debido a su alto grado de contaminación.

EL MAYOR ENVENENAMIENTO DE LA HISTORIA

Mas de 20 millones de personas están afectadas por la contaminación del agua con arsénico en Bangla Desh. Es una catástrofe de proporciones comparables a las de Bophal o Chernobil. Ocurre lejos, en Bangla Desh, y ocurre todo los días cuando cualquier habitante del este o del sur de este país asiático bebe un vaso de agua o, lo que es lo mismo, su dosis letal de arsénico. La contaminación de las aguas subterráneas por este metal, de una toxicidad similar a la del plomo, afecta ya a más de 20 millones de personas.

El problema se remonta a casi a 30 años atrás, en aquellos años acudieron a Bangla Desh diversas agencias de ayuda internacional, con UNICEF a la cabeza, con la sana intención de evitar las infecciones que provocaba el consumo de aguas estancadas. El objetivo era reducir el alto índice de mortalidad, sobre todo el infantil, causado por enfermedades como la disentería o el cólera, y para ello se inicio un programa masivo de construcción de pozos artesianos.

El plan tuvo éxito pero a u precio muy alto; los niños salvados sufren horrendas enfermedades de adultos. A partir de 1993 - los efectos del arsénico tardan entre 8 y 14 años en hacerse visibles- se empezó a detectar una altísima concentración de ese metal en el agua, que fue confirmada dos años mas tarde. Luego aparecieron los primeros enfermos. La gente de las aldeas empezaba a presentar manchas negras en la piel, endurecimiento de las palmas de las manos y de los pies, se dispararon los casos de conjuntivitis, bronquitis, diabetes y comenzaron a desarrollar tumores, gangrena e incluso cáncer

Sus efectos son letales. El BIAN estima que una de cada diez muertes que se producen en Bangla Desh se debe al arsénico y la propia ONU calcula que este metal puede ser responsable de la muerte de 20.000 bangladeshies cada año. Y son 70 millones los que viven bajo esta amenaza.

EL VERTIDO DE MERCURIO EN EL EBRO SUPERO SIETE VECES LO PERMITIDO POR LA OMS

Los análisis realizados por el Departamento de Medio Ambiente de la Generalitat catalana han dictaminado que los 4.000 peces que aparecieron muertos a la altura de las dos centrales nucleares de Ascó padecieron una intoxicación aguda de mercurio entre otros productos, como derivados de cloro e hidrocarburos.

UN ESTUDIO ALERTA SOBRE LA PRESENCIA DE COMPUESTOS NOCIVOS EN ELAGUA DEL GRIFO

Un estudio de investigadores ha identificado trihalometanos en el agua del grifo de cuatro áreas españolas de concentraciones muy superiores a la media europea. Un riesgo de un 20% de promedio de cáncer de vejiga esta asociado a estos compuestos en áreas con altas concentraciones y largos periodos de exposición.

Los trihalometanos (THM) se creen que son sustancias inductoras de determinados canceres, como el de la vejiga, colon y recto. Se ha comprobado un efecto inductor de tumores en animales de laboratorio, pero los estudios en humanos no son concluyentes.

La Agencia internacional de Investigación del Cáncer (IARC en sus siglas inglesas) de referencia mundial no los incluyen en sus listas de sustancias cancerigenas o con riesgo comprobado.

Kogevinas ve el riesgo relativamente bajo y mecho menor que el derivado del tabaquismo o la contaminación, aunque insiste en que es un importante problema de salud publica.

PROBLEMAS POTENCIALES DE CLORO EN AGUAS QUE BEBIAN

Una consecuencia de la cloracion del agua son los efectos cancerigenos hallados en quienes la beben.

El cloro es el desinfectante universal usada para tratar agua corriente por su efecto toxico en bacterias nocivas y otros organismos causantes de enfermedades. Pero hay una creciente evidencia científica que muestra que el cloro en agua bebida puede traer peligros tan grandes para las personas como para los que intentan eliminarlo. Estos pueden ser tanto por la ingesta como por la absorción a través de la piel de agua clorada.

Científicos han descubierto una conexión entre cloracion del agua y el cáncer de hígado, estomago, riñón, recto y colon, así como enfermedades del corazón, arterosclerosis (endurecimiento de la arterias), anemia, presión alta y reacciones alérgicas.

También hay pruebas de que la cloración del agua puede destruir proteínas en el cuerpo humano y causar efectos severos en piel y cabellos.

El riesgo de contraer cáncer entra la gente que bebe agua clorada es un 93% mayor de aquellos que infiltra el agua de bebida.

5









¿Qué es la Biodiversidad ?

La biodiversidad es la totalidad de los genes, las especies y los ecosistemas de una región. La riqueza actual de la vida de la Tierra es el producto de cientos de millones de años de evolución histórica. A lo largo del tiempo, surgieron culturas humanas que se adaptaron al entorno local, descubriendo, usando y modificando los recursos bióticos locales. Muchos ámbitos que ahora parecen "naturales" llevan la marca de milenios de habitación humana, cultivo de plantas y recolección de recursos. La biodiversidad fue modelada, además, por la domesticación e hibridación de variedades locales de cultivos y animales de cría.

La biodiversidad puede dividirse en tres categorías jerarquizadas--los genes, las especies, y los ecosistemas-- que describen muy diferentes aspectos de los sistemas vivientes y que los científicos miden de diferentes maneras; a saber:

Diversidad Genética

Por diversidad genética se entiende la variación de los genes dentro de las especies. Esto abarca poblaciones determinadas de las misma especie (como los miles de variedades tradicionales de arroz de la India) o la variación genética de una población (que es muy elevada entre los rinocerontes de la India, por ejemplo, y muy escasa entre los chitas). Hasta hace poco, las medidas de la diversidad genética se aplicaban principalmente a las especies y poblaciones domesticadas conservadas en zoológicos o jardines botánicos, pero las técnicas se aplican cada vez más a las especies silvestres.

Diversidad de Especies

Por diversidad de especies se entiende la variedad de especies existentes en una región. Esa diversidad puede medirse de muchas maneras, y los científicos no se han puesto de acuerdo sobre cuál es el mejor método. El número de especies de una región--su "riqueza" en especies--es una medida que a menudo se utiliza, pero una medida más precisa, la "diversidad taxonómica" tiene en cuenta la estrecha relación existente entre unas especies y otras. Por ejemplo: una isla en que hay dos especies de pájaros y una especie de lagartos tiene mayor diversidad taxonómica que una isla en que hay tres especies de pájaros pero ninguna de lagartos. Por lo tanto, aun cuando haya más especies de escarabajos terrestres que de todas las otras especies combinadas, ellos no influyen sobre la diversidad de las especies, porque están relacionados muy estrechamente. Análogamente, es mucho mayor el número de las especies que viven en tierra que las que viven en el mar, pero las especies terrestres están más estrechamente vinculadas entre sí que las especies océanicas, por lo cual la diversidad es mayor en los ecosistemas marítimos que lo que sugeriría una cuenta estricta de las especies.

Diversidad de Ecosistemas

La diversidad de los ecosistemas es más difícil de medir que la de las especies o la diversidad genética, porque las "fronteras" de las comunidades--asociaciones de especies--y de los ecosistemas no están bien definidas. No obstante, en la medida en que se utilice un conjunto de criterios coherente para definir las comunidades y los ecosistemas, podrá medirse su número y distribución. Hasta ahora, esos métodos se han aplicado principalmente a nivel nacional y subnacional, pero se han elaborado algunas clasificaciones globales groseras.

Además de la diversidad de los ecosistemas, pueden ser importantes muchas otras expresiones de la biodiversidad. Entre ellas figuran la abundancia relativa de especies, la estructura de edades de las poblaciones, la estructura de las comunidades en una región, la variación de la composición y la estructura de las comunidades a lo largo del tiempo y hasta procesos ecológicos tales como la depredación, el parasitismo y el mutualismo. En forma más general, para alcanzar metas específicas de manejo o de políticas suele ser importante examinar no sólo la diversidad de composición--genes, especies y ecosistemas--sino también la diversidad de la estructura y las funciones de los ecosistemas.

Diversidad Cultural Humana

También la diversidad cultural humana podría considerarse como parte de la biodiversidad. Al igual que la diversidad genética o de especies, algunos atributos de las culturas humanas (por ejemplo, el nomadismo o la rotación de los cultivos) representan "soluciones" a los problemas de las supervivencia en determinados ambientes. Además, al igual que otros aspectos de la biodiversidad, la diversidad cultural ayuda a las personas a adaptarse a la variación del entorno. La diversidad cultural se manifiesta por la diversidad del lenguaje, de las creencias religiosas, de las prácticas del manejo de la tierra, en el arte, en la música, en la estructura social, en la selección de los cultivos, en la dieta y en todo número concebible de otros atributos de la sociedad humana.

0 comentarios:

Publicar un comentario

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes